Machine Learning Upgrade: A Data Scientist's Guide to Mlops, Llms, and ML Infrastructure: A Data Scientist's Guide to Mlops, Llms, and ML Infrastructu
暫譯: 機器學習升級:數據科學家的 MLOps、LLMs 與 ML 基礎設施指南

Kehrer, Kristen, Kaiser, Caleb

  • 出版商: Wiley
  • 出版日期: 2024-08-20
  • 定價: $1,500
  • 售價: 9.5$1,425
  • 語言: 英文
  • 頁數: 240
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1394249632
  • ISBN-13: 9781394249633
  • 相關分類: LangChainMachine Learning
  • 立即出貨 (庫存=1)

相關主題

商品描述

A much-needed guide to implementing new technology in workspaces

From experts in the field comes Machine Learning Upgrade: A Data Scientist's Guide to MLOps, LLMs, and ML Infrastructure, a book that provides data scientists and managers with best practices at the intersection of management, large language models (LLMs), machine learning, and data science. This groundbreaking book will change the way that you view the pipeline of data science. The authors provide an introduction to modern machine learning, showing you how it can be viewed as a holistic, end-to-end system--not just shiny new gadget in an otherwise unchanged operational structure. By adopting a data-centric view of the world, you can begin to see unstructured data and LLMs as the foundation upon which you can build countless applications and business solutions. This book explores a whole world of decision making that hasn't been codified yet, enabling you to forge the future using emerging best practices.

  • Gain an understanding of the intersection between large language models and unstructured data
  • Follow the process of building an LLM-powered application while leveraging MLOps techniques such as data versioning and experiment tracking
  • Discover best practices for training, fine tuning, and evaluating LLMs
  • Integrate LLM applications within larger systems, monitor their performance, and retrain them on new data

This book is indispensable for data professionals and business leaders looking to understand LLMs and the entire data science pipeline.

商品描述(中文翻譯)

在工作空間中實施新技術的必要指南

來自該領域專家的機器學習升級:數據科學家的MLOps、LLMs和ML基礎設施指南,這本書為數據科學家和管理者提供了在管理、大型語言模型(LLMs)、機器學習和數據科學交匯處的最佳實踐。這本開創性的書籍將改變你對數據科學流程的看法。作者介紹了現代機器學習,展示了它如何被視為一個整體的端到端系統,而不僅僅是運營結構中一個閃亮的新玩意。通過採用以數據為中心的世界觀,你可以開始將非結構化數據和LLMs視為建立無數應用程序和商業解決方案的基礎。這本書探索了一個尚未被編碼的決策世界,使你能夠利用新興的最佳實踐來塑造未來。


  • 了解大型語言模型與非結構化數據之間的交集

  • 遵循構建LLM驅動應用程序的過程,同時利用MLOps技術,如數據版本控制和實驗跟踪

  • 發現訓練、微調和評估LLMs的最佳實踐

  • 將LLM應用集成到更大的系統中,監控其性能,並在新數據上重新訓練它們

這本書對於希望了解LLMs和整個數據科學流程的數據專業人士和商業領導者來說是不可或缺的。

作者簡介

Kristen Kehrer has been providing innovative and practical statistical modeling solutions since 2010. In 2018, she achieved recognition as a LinkedIn Top Voice in Data Science & Analytics. Kristen is also the founder of Data Moves Me, LLC.

Caleb Kaiser is a Full Stack Engineer at Comet. Caleb was previously on the Founding Team at Cortex Labs. Caleb also worked at Scribe Media on the Author Platform Team.

作者簡介(中文翻譯)

Kristen Kehrer 自2010年以來一直提供創新且實用的統計建模解決方案。2018年,她獲得了LinkedIn數據科學與分析領域的頂尖聲音(Top Voice)認可。Kristen也是Data Moves Me, LLC的創辦人。

Caleb Kaiser 是Comet的全端工程師。Caleb曾是Cortex Labs的創始團隊成員。他也曾在Scribe Media的作者平台團隊工作。