Deep Learning Tools for Predicting Stock Market Movements
Sharma, Renuka, Mehta, Kiran
- 出版商: Wiley-Scrivener
- 出版日期: 2024-05-07
- 售價: $7,700
- 貴賓價: 9.5 折 $7,315
- 語言: 英文
- 頁數: 496
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1394214308
- ISBN-13: 9781394214303
-
相關分類:
DeepLearning
無法訂購
相關主題
商品描述
The book provides a comprehensive overview of current research and developments in the field of deep learning models for stock market forecasting in the developed and developing worlds.
The book delves into the realm of deep learning and embraces the challenges, opportunities, and transformation of stock market analysis. Deep learning helps foresee market trends with increased accuracy. With advancements in deep learning, new opportunities in styles, tools, and techniques evolve and embrace data-driven insights with theories and practical applications. Learn about designing, training, and applying predictive models with rigorous attention to detail. This book offers critical thinking skills and the cultivation of discerning approaches to market analysis.
The book:
- details the development of an ensemble model for stock market prediction, combining long short-term memory and autoregressive integrated moving average;
- explains the rapid expansion of quantum computing technologies in financial systems;
- provides an overview of deep learning techniques for forecasting stock market trends and examines their effectiveness across different time frames and market conditions;
- explores applications and implications of various models for causality, volatility, and co-integration in stock markets, offering insights to investors and policymakers.
Audience
The book has a wide audience of researchers in financial technology, financial software engineering, artificial intelligence, professional market investors, investment institutions, and asset management companies.
商品描述(中文翻譯)
深度學習工具用於預測股市變動
本書提供了對於發達國家和發展中國家在股市預測領域的深度學習模型的當前研究和發展的全面概述。
本書深入探討深度學習的領域,並接受股市分析的挑戰、機會和轉變。深度學習有助於以更高的準確性預見市場趨勢。隨著深度學習的進步,新的風格、工具和技術的機會不斷演變,並結合數據驅動的見解與理論和實際應用。學習設計、訓練和應用預測模型,並對細節進行嚴格的關注。本書提供批判性思維技能,並培養對市場分析的敏銳方法。
本書內容包括:
- 詳細介紹一個結合長短期記憶(LSTM)和自回歸整合移動平均(ARIMA)的集成模型的開發,用於股市預測;
- 解釋量子計算技術在金融系統中的快速擴展;
- 提供深度學習技術在預測股市趨勢方面的概述,並檢視其在不同時間框架和市場條件下的有效性;
- 探索各種模型在股市因果關係、波動性和協整方面的應用和影響,為投資者和政策制定者提供見解。
讀者對象
本書的讀者範圍廣泛,包括金融科技、金融軟體工程、人工智慧的研究人員,專業市場投資者、投資機構和資產管理公司。
作者簡介
Renuka Sharma, PhD, is a professor of finance at the Chitkara Business School, Punjab, India. She has authored more than 70 research papers published in international and national journals as well as authoring books on financial services. She is a much sought-after speaker on the international circuit. Her current research concentrates on SMEs and innovation, responsible investment, corporate governance, behavioral biases, risk management, and portfolios.
Kiran Mehta, PhD, is a professor and dean of finance at Chitkara Business School, Punjab, India. She has published one book on financial services. Currently, her research endeavors focus on sustainable business and entrepreneurship, cryptocurrency, ethical investments, and women's entrepreneurship. Additionally, Dr. Kiran is the founder and director of a research and consultancy firm.
作者簡介(中文翻譯)
Renuka Sharma, PhD,是印度旁遮普州Chitkara商學院的金融學教授。她已發表超過70篇研究論文,這些論文刊登於國際和國內期刊,並著有關於金融服務的書籍。她在國際舞台上是一位備受追捧的演講者。她目前的研究集中於中小企業與創新、負責任投資、公司治理、行為偏差、風險管理和投資組合。
Kiran Mehta, PhD,是印度旁遮普州Chitkara商學院的金融學教授及院長。她已出版一本關於金融服務的書籍。目前,她的研究工作專注於可持續商業與創業、加密貨幣、倫理投資以及女性創業。此外,Kiran博士是一家研究與諮詢公司的創始人及董事。