Data Science Fundamentals with R, Python, and Open Data
暫譯: R、Python 與開放數據的資料科學基礎

Cremonini, Marco

  • 出版商: Wiley
  • 出版日期: 2024-04-16
  • 售價: $4,450
  • 貴賓價: 9.5$4,228
  • 語言: 英文
  • 頁數: 480
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1394213247
  • ISBN-13: 9781394213245
  • 相關分類: Python程式語言Data Science
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Data Science Fundamentals with R, Python, and Open Data

Introduction to essential concepts and techniques of the fundamentals of R and Python needed to start data science projects

Organized with a strong focus on open data, Data Science Fundamentals with R, Python, and Open Data discusses concepts, techniques, tools, and first steps to carry out data science projects, with a focus on Python and RStudio, reflecting a clear industry trend emerging towards the integration of the two. The text examines intricacies and inconsistencies often found in real data, explaining how to recognize them and guiding readers through possible solutions, and enables readers to handle real data confidently and apply transformations to reorganize, indexing, aggregate, and elaborate.

This book is full of reader interactivity, with a companion website hosting supplementary material including datasets used in the examples and complete running code (R scripts and Jupyter notebooks) of all examples. Exam-style questions are implemented and multiple choice questions to support the readers' active learning. Each chapter presents one or more case studies.

Written by a highly qualified academic, Data Science Fundamentals with R, Python, and Open Data discuss sample topics such as:

  • Data organization and operations on data frames, covering reading CSV dataset and common errors, and slicing, creating, and deleting columns in R
  • Logical conditions and row selection, covering selection of rows with logical condition and operations on dates, strings, and missing values
  • Pivoting operations and wide form-long form transformations, indexing by groups with multiple variables, and indexing by group and aggregations
  • Conditional statements and iterations, multicolumn functions and operations, data frame joins, and handling data in list/dictionary format

Data Science Fundamentals with R, Python, and Open Data is a highly accessible learning resource for students from heterogeneous disciplines where Data Science and quantitative, computational methods are gaining popularity, along with hard sciences not closely related to computer science, and medical fields using stochastic and quantitative models.

商品描述(中文翻譯)

使用 R、Python 和開放數據的資料科學基礎

介紹開始資料科學專案所需的 R 和 Python 基礎概念與技術

本書以開放數據為重點,使用 R、Python 和開放數據的資料科學基礎 討論了執行資料科學專案的概念、技術、工具和第一步,特別關注 Python 和 RStudio,反映出業界日益趨向於兩者的整合。文本探討了在真實數據中常見的複雜性和不一致性,解釋如何識別這些問題並指導讀者尋找可能的解決方案,使讀者能夠自信地處理真實數據,並應用轉換來重新組織、索引、聚合和詳細說明。

本書充滿了讀者互動,配有網站提供補充材料,包括示例中使用的數據集和所有示例的完整運行代碼(R 腳本和 Jupyter 筆記本)。書中實施了考試風格的問題和多選題,以支持讀者的主動學習。每一章都呈現一個或多個案例研究。

本書由一位高素質的學者撰寫,使用 R、Python 和開放數據的資料科學基礎 討論的示例主題包括:


  • 數據組織和數據框的操作,涵蓋讀取 CSV 數據集和常見錯誤,以及在 R 中切片、創建和刪除列

  • 邏輯條件和行選擇,涵蓋使用邏輯條件選擇行以及對日期、字符串和缺失值的操作

  • 樞紐操作和寬格式-長格式轉換,按多個變量分組索引,以及按組和聚合的索引

  • 條件語句和迭代、多列函數和操作、數據框的連接,以及處理列表/字典格式的數據

使用 R、Python 和開放數據的資料科學基礎 是一個高度可及的學習資源,適合來自不同學科的學生,資料科學及定量、計算方法日益受到重視,還包括與計算機科學不密切相關的硬科學和使用隨機及定量模型的醫學領域。

作者簡介

Marco Cremonini is Assistant Professor with the Department of Social and Political Sciences at the University of Milan, Italy. He is Academic Editor and Board Member of PLOS ONE and his current research interests are focused on computational network and agent-based models of propagation and behavior.

作者簡介(中文翻譯)

馬可·克雷莫尼尼(Marco Cremonini)是義大利米蘭大學社會與政治科學系的助理教授。他是PLOS ONE的學術編輯及委員會成員,目前的研究興趣集中在計算網絡和基於代理的傳播與行為模型上。