Applied Machine Learning for Data Science Practitioners
暫譯: 數據科學從業者的應用機器學習

Subramanian, Vidya

  • 出版商: Wiley
  • 出版日期: 2025-04-29
  • 售價: $2,690
  • 貴賓價: 9.5$2,556
  • 語言: 英文
  • 頁數: 656
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1394155379
  • ISBN-13: 9781394155378
  • 相關分類: Machine LearningData Science
  • 尚未上市,無法訂購

商品描述

Single volume reference on using various aspects of data science to evaluate, understand, and solve business problems

A reference book for anyone in the field of data science, Applied Machine Learning for Data Science Practitioners walks readers through the end-to-end process of solving any machine learning problem by identifying, choosing, and applying the right solution for the issue at hand. The text enables readers to figure out optimal validation techniques based on the use case and data orientation, choose a range of pertinent models from different types of learning, and score models to apply metrics across all the estimators evaluated.

Unlike most books on data science in today's market that jump right into algorithms and coding and focus on the most-used algorithms, this text helps data scientists evaluate all pertinent techniques and algorithms to assess all these machine learning problems and suitable solutions. Readers can make an informed decision on which models and validation techniques to use based on the business problem, data availability, desired outcome, and more.

Written by an internationally recognized author in the field of data science, Applied Machine Learning for Data Science Practitioners also covers topics such as:

  • Data preparation, including basic data cleaning, integration, transformation, and compression methods, along with data visualization and exploratory analyses
  • Cross-validation in model validation techniques, including independent, identically distributed, imbalanced, blocked, and grouped data
  • Prediction using regression models and classification using classification models, with applicable performance measurements for each
  • Types of clustering in clustering models based on partition, hierarchy, fuzzy theory, distribution, density, and graph theory
  • Detecting anomalies, including types of anomalies and key terms like noise, rare events, and outliers

Applied Machine Learning for Data Science Practitioners is an essential resource for all data scientists and business professionals to cross-validate a range of different algorithms to find an optimal solution. Readers are assumed to have a basic understanding of solving business problems using data, high school level math, statistics, and coding skills.

商品描述(中文翻譯)

使用數據科學各個方面來評估、理解和解決商業問題的單卷參考書

一本針對數據科學領域的參考書,應用機器學習:數據科學從業者指南 引導讀者通過解決任何機器學習問題的端到端過程,識別、選擇並應用適合當前問題的解決方案。該文本使讀者能夠根據使用案例和數據取向找出最佳的驗證技術,從不同類型的學習中選擇一系列相關模型,並對所有評估的估算器應用指標來評分模型。

與當今市場上大多數數據科學書籍直接跳入算法和編碼並專注於最常用的算法不同,這本書幫助數據科學家評估所有相關技術和算法,以評估所有這些機器學習問題和合適的解決方案。讀者可以根據商業問題、數據可用性、期望結果等做出明智的決策,選擇使用哪些模型和驗證技術。

由國際公認的數據科學領域作者撰寫,應用機器學習:數據科學從業者指南 還涵蓋以下主題:


  • 數據準備,包括基本的數據清理、整合、轉換和壓縮方法,以及數據可視化和探索性分析

  • 模型驗證技術中的交叉驗證,包括獨立、同分佈、不平衡、分塊和分組數據

  • 使用回歸模型進行預測和使用分類模型進行分類,並為每種模型提供適用的性能測量

  • 基於劃分、層次、模糊理論、分佈、密度和圖論的聚類模型中的聚類類型

  • 檢測異常,包括異常的類型和關鍵術語,如噪聲、稀有事件和離群值

應用機器學習:數據科學從業者指南 是所有數據科學家和商業專業人士的必備資源,用於交叉驗證不同算法以找到最佳解決方案。假設讀者對使用數據解決商業問題有基本了解,具備高中數學、統計學和編碼技能。

作者簡介

Vidya Subramanian is a passionate Data Science and Analytics leader, with experience leading teams at Google, Apple, and Intuit. Forbes recognized her as one of the "8 Female Analytics Experts From The Fortune 500." She authored Adobe Analytics with SiteCatalyst (Adobe Press) and McGraw-Hill's PMP Certification Mathematics (McGraw Hill). Vidya holds Master's degrees from Virginia Tech and Somaiya Institute of Management (India) and currently leads Data Science and Analytics for Google Play.

作者簡介(中文翻譯)

Vidya Subramanian 是一位熱衷於數據科學和分析的領導者,曾在 Google、Apple 和 Intuit 領導團隊。福布斯將她評選為「《財富》500 強中的 8 位女性分析專家」之一。她著有 Adobe Analytics with SiteCatalyst(Adobe Press)和 McGraw-Hill's PMP Certification Mathematics(McGraw Hill)。Vidya 擁有維吉尼亞理工大學和印度 Somaiya 管理學院的碩士學位,目前負責 Google Play 的數據科學和分析工作。