Machine Learning Evaluation: Towards Reliable and Responsible AI
暫譯: 機器學習評估:邁向可靠與負責任的人工智慧

Japkowicz, Nathalie, Boukouvalas, Zois, Shah, Mohak

  • 出版商: Cambridge
  • 出版日期: 2024-11-21
  • 售價: $3,010
  • 貴賓價: 9.5$2,860
  • 語言: 英文
  • 頁數: 420
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1316518868
  • ISBN-13: 9781316518861
  • 相關分類: 人工智慧Machine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

As machine learning applications gain widespread adoption and integration in a variety of applications, including safety and mission-critical systems, the need for robust evaluation methods grows more urgent. This book compiles scattered information on the topic from research papers and blogs to provide a centralized resource that is accessible to students, practitioners, and researchers across the sciences. The book examines meaningful metrics for diverse types of learning paradigms and applications, unbiased estimation methods, rigorous statistical analysis, fair training sets, and meaningful explainability, all of which are essential to building robust and reliable machine learning products. In addition to standard classification, the book discusses unsupervised learning, regression, image segmentation, and anomaly detection. The book also covers topics such as industry-strength evaluation, fairness, and responsible AI. Implementations using Python and scikit-learn are available on the book's website.

商品描述(中文翻譯)

隨著機器學習應用在各種應用中,包括安全和任務關鍵系統,獲得廣泛採用和整合,對於穩健評估方法的需求變得愈加迫切。本書彙編了來自研究論文和部落格的分散資訊,提供一個可供學生、從業者和科學研究者使用的集中資源。本書探討了針對各種學習範式和應用的有意義指標、公正的估計方法、嚴謹的統計分析、公平的訓練集以及有意義的可解釋性,這些都是構建穩健和可靠的機器學習產品所必需的。除了標準分類外,本書還討論了無監督學習、回歸、圖像分割和異常檢測等主題。本書還涵蓋了行業級評估、公平性和負責任的人工智慧等主題。使用 Python 和 scikit-learn 的實作可在本書網站上獲得。