Machine Learning Evaluation: Towards Reliable and Responsible AI

Japkowicz, Nathalie, Boukouvalas, Zois, Shah, Mohak

  • 出版商: Cambridge
  • 出版日期: 2024-11-21
  • 售價: $2,950
  • 貴賓價: 9.5$2,803
  • 語言: 英文
  • 頁數: 420
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1316518868
  • ISBN-13: 9781316518861
  • 相關分類: 人工智慧Machine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

As machine learning applications gain widespread adoption and integration in a variety of applications, including safety and mission-critical systems, the need for robust evaluation methods grows more urgent. This book compiles scattered information on the topic from research papers and blogs to provide a centralized resource that is accessible to students, practitioners, and researchers across the sciences. The book examines meaningful metrics for diverse types of learning paradigms and applications, unbiased estimation methods, rigorous statistical analysis, fair training sets, and meaningful explainability, all of which are essential to building robust and reliable machine learning products. In addition to standard classification, the book discusses unsupervised learning, regression, image segmentation, and anomaly detection. The book also covers topics such as industry-strength evaluation, fairness, and responsible AI. Implementations using Python and scikit-learn are available on the book's website.

商品描述(中文翻譯)

隨著機器學習應用在各種領域中廣泛被採用和整合,包括安全和任務關鍵系統,對於強大的評估方法的需求變得更加迫切。本書匯集了有關該主題的研究論文和博客中的零散信息,提供了一個集中的資源,可供科學界的學生、從業人員和研究人員使用。本書探討了多種學習範式和應用的有意義的評估指標、無偏估計方法、嚴格的統計分析、公平的訓練集以及有意義的可解釋性,這些都是構建強大可靠的機器學習產品所必需的。除了標準的分類,本書還討論了無監督學習、回歸、圖像分割和異常檢測等主題。本書還涵蓋了行業強度的評估、公平性和負責任的人工智能等議題。書中提供了使用Python和scikit-learn的實現,可在書的網站上獲得。