Machine Learning and Data Sciences for Financial Markets: A Guide to Contemporary Practices
Capponi, Agostino, Lehalle, Charles-Albert
- 出版商: Cambridge
- 出版日期: 2023-08-10
- 售價: $4,960
- 貴賓價: 9.5 折 $4,712
- 語言: 英文
- 頁數: 741
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1316516199
- ISBN-13: 9781316516195
-
相關分類:
Machine Learning、Data Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
Leveraging the research efforts of more than sixty experts in the area, this book reviews cutting-edge practices in machine learning for financial markets. Instead of seeing machine learning as a new field, the authors explore the connection between knowledge developed by quantitative finance over the past forty years and techniques generated by the current revolution driven by data sciences and artificial intelligence. The text is structured around three main areas: 'Interactions with investors and asset owners, ' which covers robo-advisors and price formation; 'Risk intermediation, ' which discusses derivative hedging, portfolio construction, and machine learning for dynamic optimization; and 'Connections with the real economy, ' which explores nowcasting, alternative data, and ethics of algorithms. Accessible to a wide audience, this invaluable resource will allow practitioners to include machine learning driven techniques in their day-to-day quantitative practices, while students will build intuition and come to appreciate the technical tools and motivation for the theo
商品描述(中文翻譯)
本書整合了超過六十位專家在機器學習在金融市場的最新實踐研究,並探討了過去四十年來量化金融所發展的知識與當今由數據科學和人工智慧驅動的技術之間的聯繫。書中分為三個主要領域:「與投資者和資產擁有者的互動」,包括機器人顧問和價格形成;「風險中介」,討論衍生品對沖、投資組合構建和動態優化的機器學習;以及「與實際經濟的聯繫」,探討即時預測、替代數據和算法倫理。這本書對廣大讀者具有可讀性,將使從業人員能夠將機器學習技術納入日常量化實踐中,同時學生們將建立直覺並理解技術工具和理論的動機。