Quantitative Asset Management: Factor Investing and Machine Learning for Institutional Investing
Robbins, Michael
- 出版商: McGraw-Hill Education
- 出版日期: 2023-06-16
- 售價: $2,580
- 貴賓價: 9.5 折 $2,451
- 語言: 英文
- 頁數: 496
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1264258445
- ISBN-13: 9781264258444
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Augment your asset allocation strategy with machine learning and factor investing for unprecedented returns and growth
Whether you're managing institutional portfolios or private wealth, Quantitative Asset Management will open your eyes to a new, more successful way of investing--one that harnesses the power of big data and machine learning.
This groundbreaking guide walks you through everything you need to know to fully leverage these revolutionary tools. Written from the perspective of a seasoned financial investor making use of technology, it details proven investing methods, striking a rare balance between providing important technical information without burdening you with overly complex investing theory. Quantitative Asset Management is organized into four thematic sections:
- Part I reveals invaluable lessons for planning and governance of investment decision-making.
- Part 2 discusses quantitative financial modeling, covering important topics like overfitting, mitigating unrealistic assumptions, managing substitutions, enhancing minority classes, and missing data imputation.
- Part 3 shows how to develop a strategy into an investment product, including the alpha models, risk models, implementation, backtesting, and cost optimization.
- Part 4 explains how to measure performance, learn from mistakes, manage risk, and survive financial tragedies.
With Quantitative Asset Management, you have everything you need to build your awareness of other markets, ask the right questions and answer them effectively, and drive steady profits even through times of great uncertainty.
商品描述(中文翻譯)
透過機器學習和因子投資,增強您的資產配置策略,獲得前所未有的回報和成長。
無論您是管理機構投資組合還是私人財富,Quantitative Asset Management將為您揭示一種新的、更成功的投資方式,利用大數據和機器學習的力量。
這本開創性的指南將引導您全面利用這些革命性的工具。從一位利用技術的經驗豐富的金融投資者的角度撰寫,它詳細介紹了經過驗證的投資方法,既提供重要的技術信息,又不負擔您過於複雜的投資理論。Quantitative Asset Management分為四個主題部分:
第一部分揭示了投資決策規劃和治理的寶貴經驗教訓。
第二部分討論了量化金融建模,涵蓋了重要主題,如過度擬合、減少不切實際的假設、管理替代品、增強少數類別和缺失數據填補。
第三部分展示了如何將策略發展成投資產品,包括alpha模型、風險模型、實施、回測和成本優化。
第四部分解釋了如何衡量績效、從錯誤中學習、管理風險和度過金融災難。
憑藉Quantitative Asset Management,您將擁有一切所需,建立對其他市場的認識,提出正確的問題並有效回答,即使在極度不確定的時期也能獲得穩定的利潤。