Knowledge Discovery Process and Methods to Enhance Organizational Performance
暫譯: 知識發現過程與提升組織績效的方法

  • 出版商: Auerbach Publication
  • 出版日期: 2024-01-31
  • 售價: $2,400
  • 貴賓價: 9.5$2,280
  • 語言: 英文
  • 裝訂: Paperback
  • ISBN: 1138894257
  • ISBN-13: 9781138894259
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Although the terms "data mining" and "knowledge discovery and data mining" (KDDM) are sometimes used interchangeably, data mining is actually just one step in the KDDM process. Data mining is the process of extracting useful information from data, while KDDM is the coordinated process of understanding the business and mining the data in order to identify previously unknown patterns.

Knowledge Discovery Process and Methods to Enhance Organizational Performance explains the knowledge discovery and data mining (KDDM) process in a manner that makes it easy for readers to implement. Sharing the insights of international KDDM experts, it details powerful strategies, models, and techniques for managing the full cycle of knowledge discovery projects. The book supplies a process-centric view of how to implement successful data mining projects through the use of the KDDM process. It discusses the implications of data mining including security, privacy, ethical and legal considerations.

 

  • Provides an introduction to KDDM, including the various models adopted in academia and industry
  • Details critical success factors for KDDM projects as well as the impact of poor quality data or inaccessibility to data on KDDM projects
  • Proposes the use of hybrid approaches that couple data mining with other analytic techniques (e.g., data envelopment analysis, cluster analysis, and neural networks) to derive greater value and utility
  • Demonstrates the applicability of the KDDM process beyond analytics
  • Shares experiences of implementing and applying various stages of the KDDM process in organizations

The book includes case study examples of KDDM applications in business and government. After reading this book, you will understand the critical success factors required to develop robust data mining objectives that are in alignment with your organization’s strategic business objectives.

商品描述(中文翻譯)

雖然「資料探勘」(data mining)和「知識發現與資料探勘」(knowledge discovery and data mining, KDDM)這兩個術語有時會互換使用,但資料探勘實際上只是 KDDM 過程中的一個步驟。資料探勘是從資料中提取有用資訊的過程,而 KDDM 則是理解業務並挖掘資料以識別先前未知模式的協調過程。

**知識發現過程與提升組織績效的方法** 以易於讀者實施的方式解釋了知識發現與資料探勘(KDDM)過程。書中分享了國際 KDDM 專家的見解,詳細介紹了管理知識發現專案全週期的強大策略、模型和技術。該書提供了一個以過程為中心的觀點,說明如何通過使用 KDDM 過程來實施成功的資料探勘專案。它還討論了資料探勘的影響,包括安全性、隱私、倫理和法律考量。

- 提供 KDDM 的介紹,包括學術界和業界採用的各種模型
- 詳細說明 KDDM 專案的關鍵成功因素,以及低品質資料或資料無法獲取對 KDDM 專案的影響
- 提議使用混合方法,將資料探勘與其他分析技術(例如資料包絡分析、群集分析和神經網絡)結合,以獲得更大的價值和效用
- 展示 KDDM 過程在分析之外的適用性
- 分享在組織中實施和應用 KDDM 過程各階段的經驗

本書包括 KDDM 在商業和政府應用的案例研究範例。閱讀完本書後,您將了解開發與組織戰略業務目標一致的穩健資料探勘目標所需的關鍵成功因素。