Computational Paralinguistics: Emotion, Affect and Personality in Speech and Language Processing (Hardcover)
暫譯: 計算語言學:語音與語言處理中的情感、情緒與個性 (精裝版)

Björn Schuller, Anton Batliner

  • 出版商: Wiley
  • 出版日期: 2013-12-04
  • 售價: $5,050
  • 貴賓價: 9.5$4,798
  • 語言: 英文
  • 頁數: 344
  • 裝訂: Hardcover
  • ISBN: 1119971365
  • ISBN-13: 9781119971368
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book presents the methods, tools and techniques that are currently being used to recognise (automatically) the affect, emotion, personality and everything else beyond linguistics (‘paralinguistics’) expressed by or embedded in human speech and language.

It is the first book to provide such a systematic survey of paralinguistics in speech and language processing. The technology described has evolved mainly from automatic speech and speaker recognition and processing, but also takes into account recent developments within speech signal processing, machine intelligence and data mining.

Moreover, the book offers a hands-on approach by integrating actual data sets, software, and open-source utilities which will make the book invaluable as a teaching tool and similarly useful for those professionals already in the field.

Key features:

  • Provides an integrated presentation of basic research (in phonetics/linguistics and humanities) with state-of-the-art engineering approaches for speech signal processing and machine intelligence.
  • Explains the history and state of the art of all of the sub-fields which contribute to the topic of computational paralinguistics.
  • C overs the signal processing and machine learning aspects of the actual computational modelling of emotion and personality and explains the detection process from corpus collection to feature extraction and from model testing to system integration.
  • Details aspects of real-world system integration including distribution, weakly supervised learning and confidence measures.
  • Outlines machine learning approaches including static, dynamic and context‑sensitive algorithms for classification and regression.
  • Includes a tutorial on freely available toolkits, such as the open-source ‘openEAR’ toolkit for emotion and affect recognition co-developed by one of the authors, and a listing of standard databases and feature sets used in the field to allow for immediate experimentation enabling the reader to build an emotion detection model on an existing corpus.

商品描述(中文翻譯)

這本書介紹了當前用於自動識別人類語音和語言中表達或嵌入的情感、情緒、個性以及超越語言學的所有其他內容(「副語言學」)的方法、工具和技術。

這是第一本提供語音和語言處理中副語言學系統性調查的書籍。所描述的技術主要源於自動語音和說話者識別及處理,但也考慮了語音信號處理、機器智能和數據挖掘的最新發展。

此外,這本書通過整合實際數據集、軟體和開源工具,提供了實踐導向的方法,這使得本書成為一個寶貴的教學工具,同樣對於已在該領域的專業人士也非常有用。

主要特點:

- 提供基本研究(在語音學/語言學和人文學科)與語音信號處理和機器智能的最先進工程方法的綜合介紹。
- 解釋所有貢獻於計算副語言學主題的子領域的歷史和最新技術。
- 涵蓋情感和個性的實際計算建模的信號處理和機器學習方面,並解釋從語料庫收集到特徵提取,再到模型測試和系統整合的檢測過程。
- 詳細說明現實世界系統整合的各個方面,包括分佈、弱監督學習和信心度量。
- 概述機器學習方法,包括靜態、動態和上下文敏感的分類和回歸算法。
- 包含關於免費可用工具包的教程,例如由其中一位作者共同開發的開源「openEAR」情感和情緒識別工具包,以及該領域中使用的標準數據庫和特徵集的列表,以便讀者能夠立即進行實驗,並在現有語料庫上構建情感檢測模型。