Deep Learning Approaches for Security Threats in Iot Environments (Hardcover)
暫譯: 物聯網環境中安全威脅的深度學習方法 (精裝版)
Abdel-Basset, Mohamed, Moustafa, Nour, Hawash, Hossam
- 出版商: Wiley
- 出版日期: 2022-12-08
- 售價: $1,980
- 貴賓價: 9.8 折 $1,940
- 語言: 英文
- 頁數: 384
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1119884144
- ISBN-13: 9781119884149
-
相關分類:
DeepLearning、物聯網 IoT、資訊安全
下單後立即進貨 (約5~7天)
相關主題
商品描述
An expert discussion of the application of deep learning methods in the IoT security environment
In Deep Learning Approaches for Security Threats in IoT Environments, a team of distinguished cybersecurity educators deliver an insightful and robust exploration of how to approach and measure the security of Internet-of-Things (IoT) systems and networks. In this book, readers will examine critical concepts in artificial intelligence (AI) and IoT, and apply effective strategies to help secure and protect IoT networks. The authors discuss supervised, semi-supervised, and unsupervised deep learning techniques, as well as reinforcement and federated learning methods for privacy preservation.
This book applies deep learning approaches to IoT networks and solves the security problems that professionals frequently encounter when working in the field of IoT, as well as providing ways in which smart devices can solve cyber security issues.
Readers will also get access to a companion website with PowerPoint presentations, links to supporting videos, and additional resources. They'll also find:
- A thorough introduction to artificial intelligence and the Internet of Things, including key concepts like deep learning, security, and privacy
- Comprehensive discussions of the architectures, protocols, and standards that form the foundation of deep learning for securing modern IoT systems and networks
- In-depth examinations of the architectural design of cloud, fog, and edge computing networks
- Fulsome presentations of the security requirements, threats, and countermeasures relevant to IoT networks
Perfect for professionals working in the AI, cybersecurity, and IoT industries, Deep Learning Approaches for Security Threats in IoT Environments will also earn a place in the libraries undergraduate and graduate students studying deep learning, cybersecurity, privacy preservation, and the security of IoT networks.
商品描述(中文翻譯)
深度學習方法在物聯網安全環境中的應用專家討論
在物聯網環境中的安全威脅深度學習方法一書中,一組傑出的網路安全教育者深入探討如何評估和測量物聯網(IoT)系統和網路的安全性。讀者將檢視人工智慧(AI)和物聯網的關鍵概念,並應用有效的策略來幫助保護和保障物聯網網路。作者討論了監督式、半監督式和非監督式的深度學習技術,以及用於隱私保護的強化學習和聯邦學習方法。
本書將深度學習方法應用於物聯網網路,解決專業人士在物聯網領域工作時經常遇到的安全問題,並提供智慧設備解決網路安全問題的方法。
讀者還將獲得一個伴隨網站的訪問權限,該網站包含PowerPoint簡報、支持視頻的鏈接和其他資源。他們還會發現:
- 對人工智慧和物聯網的全面介紹,包括深度學習、安全性和隱私等關鍵概念
- 對構成現代物聯網系統和網路安全的深度學習架構、協議和標準的全面討論
- 對雲端、霧計算和邊緣計算網路的架構設計的深入檢視
- 對物聯網網路相關的安全需求、威脅和對策的詳細介紹
本書非常適合在人工智慧、網路安全和物聯網行業工作的專業人士,同時也將成為學習深度學習、網路安全、隱私保護和物聯網網路安全的本科生和研究生圖書館中的重要書籍。
作者簡介
Mohamed Abdel-Basset, PhD, is an Associate Professor in the Faculty of Computers and Informatics at Zagazig University, Egypt. He is a Senior Member of the IEEE.
Nour Moustafa, PhD, is a Postgraduate Discipline Coordinator (Cyber) and Senior Lecturer in Cybersecurity and Computing at the School of Engineering and Information Technology at the University of New South Wales, UNSW Canberra, Australia.
Hossam Hawash is an Assistant Lecturer in the Department of Computer Science, Faculty of Computers and Informatics at Zagazig University, Egypt.
作者簡介(中文翻譯)
Mohamed Abdel-Basset, PhD, 是埃及扎卡齊格大學計算機與資訊學院的副教授。他是IEEE的資深會員。
Nour Moustafa, PhD, 是澳大利亞新南威爾士大學坎培拉校區工程與資訊技術學院的研究生學科協調員(網路安全)及網路安全與計算的高級講師。
Hossam Hawash 是埃及扎卡齊格大學計算機科學系的助理講師。