Artificial Intelligence and Quantum Computing for Advanced Wireless Networks
暫譯: 先進無線網路的人工智慧與量子計算

Glisic, Savo G., Lorenzo, Beatriz

  • 出版商: Wiley
  • 出版日期: 2022-04-11
  • 售價: $5,790
  • 貴賓價: 9.5$5,501
  • 語言: 英文
  • 頁數: 864
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1119790298
  • ISBN-13: 9781119790297
  • 相關分類: 人工智慧Wireless-networks量子計算
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

ARTIFICIAL INTELLIGENCE AND QUANTUM COMPUTING FOR ADVANCED WIRELESS NETWORKS

A practical overview of the implementation of artificial intelligence and quantum computing technology in large-scale communication networks

Increasingly dense and flexible wireless networks require the use of artificial intelligence (AI) for planning network deployment, optimization, and dynamic control. Machine learning algorithms are now often used to predict traffic and network state in order to reserve resources for smooth communication with high reliability and low latency.

In Artificial Intelligence and Quantum Computing for Advanced Wireless Networks, the authors deliver a practical and timely review of AI-based learning algorithms, with several case studies in both Python and R. The book discusses the game-theory-based learning algorithms used in decision making, along with various specific applications in wireless networks, like channel, network state, and traffic prediction. Additional chapters include Fundamentals of ML, Artificial Neural Networks (NN), Explainable and Graph NN, Learning Equilibria and Games, AI Algorithms in Networks, Fundamentals of Quantum Communications, Quantum Channel, Information Theory and Error Correction, Quantum Optimization Theory, and Quantum Internet, to name a few.

The authors offer readers an intuitive and accessible path from basic topics on machine learning through advanced concepts and techniques in quantum networks. Readers will benefit from:

  • A thorough introduction to the fundamentals of machine learning algorithms, including linear and logistic regression, decision trees, random forests, bagging, boosting, and support vector machines
  • An exploration of artificial neural networks, including multilayer neural networks, training and backpropagation, FIR architecture spatial-temporal representations, quantum ML, quantum information theory, fundamentals of quantum internet, and more
  • Discussions of explainable neural networks and XAI
  • Examinations of graph neural networks, including learning algorithms and linear and nonlinear GNNs in both classical and quantum computing technology

Perfect for network engineers, researchers, and graduate and masters students in computer science and electrical engineering, Artificial Intelligence and Quantum Computing for Advanced Wireless Networks is also an indispensable resource for IT support staff, along with policymakers and regulators who work in technology.

商品描述(中文翻譯)

**人工智慧與量子計算在先進無線網路中的應用**

**大型通信網路中人工智慧與量子計算技術實施的實用概述**

日益密集且靈活的無線網路需要使用人工智慧(AI)來規劃網路部署、優化和動態控制。機器學習演算法現在常用於預測流量和網路狀態,以便為高可靠性和低延遲的順暢通信保留資源。

在《人工智慧與量子計算在先進無線網路中的應用》一書中,作者提供了基於AI的學習演算法的實用且及時的回顧,並包含多個使用Python和R的案例研究。本書討論了用於決策的博弈論基礎學習演算法,以及在無線網路中的各種具體應用,如通道、網路狀態和流量預測。其他章節包括機器學習基礎、人工神經網路(NN)、可解釋的圖神經網路、學習均衡與博弈、網路中的AI演算法、量子通信基礎、量子通道、信息理論與錯誤修正、量子優化理論和量子互聯網等。

作者為讀者提供了一條直觀且易於理解的路徑,從機器學習的基本主題到量子網路中的高級概念和技術。讀者將受益於:

- 對機器學習演算法基礎的徹底介紹,包括線性回歸和邏輯回歸、決策樹、隨機森林、袋裝法、提升法和支持向量機
- 對人工神經網路的探索,包括多層神經網路、訓練與反向傳播、FIR架構的時空表示、量子機器學習、量子信息理論、量子互聯網基礎等
- 對可解釋神經網路和可解釋人工智慧(XAI)的討論
- 對圖神經網路的檢視,包括學習演算法以及在經典和量子計算技術中的線性和非線性GNN

本書非常適合網路工程師、研究人員以及計算機科學和電機工程的研究生和碩士生,同時也是IT支援人員、政策制定者和技術監管者不可或缺的資源。

作者簡介

Savo G. Glisic is Research Professor at Worcester Polytechnic Institute, Massachusetts, USA. His research interests include network optimization theory, network topology control and graph theory, cognitive networks, game theory, artificial intelligence, and quantum computing technology.

Beatriz Lorenzo is Assistant Professor in the Department of Electrical and Computer Engineering at the University of Massachusetts Amherst, USA. Her research interests include the areas of communication networks, wireless networks, and mobile computing.

作者簡介(中文翻譯)

Savo G. Glisic 是美國麻薩諸塞州伍斯特理工學院的研究教授。他的研究興趣包括網路優化理論、網路拓撲控制與圖論、認知網路、博弈論、人工智慧以及量子計算技術。

Beatriz Lorenzo 是美國麻薩諸塞州阿默斯特大學電機與計算機工程系的助理教授。她的研究興趣包括通信網路、無線網路和行動計算等領域。