Computational Analysis and Deep Learning for Medical Care: Principles, Methods, and Applications
暫譯: 醫療照護的計算分析與深度學習:原則、方法與應用

Tyagi, Amit Kumar

  • 出版商: Wiley
  • 出版日期: 2021-08-24
  • 售價: $8,050
  • 貴賓價: 9.5$7,648
  • 語言: 英文
  • 頁數: 528
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1119785723
  • ISBN-13: 9781119785729
  • 相關分類: DeepLearning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book discuss how deep learning can help healthcare images or text data in making useful decisions". For that, the need of reliable deep learning models like Neural networks, Convolutional neural network, Backpropagation, Recurrent neural network is increasing in medical image processing, i.e., in Colorization of Black and white images of X-Ray, automatic machine translation, object classification in photographs / images (CT-SCAN), character or useful generation (ECG), image caption generation, etc. Hence, Reliable Deep Learning methods for perception or producing belter results are highly effective for e-healthcare applications, which is the challenge of today. For that, this book provides some reliable deep leaning or deep neural networks models for healthcare applications via receiving chapters from around the world. In summary, this book will cover introduction, requirement, importance, issues and challenges, etc., faced in available current deep learning models (also include innovative deep learning algorithms/ models for curing disease in Medicare) and provide opportunities for several research communities with including several research gaps in deep learning models (for healthcare applications).

商品描述(中文翻譯)

本書討論深度學習如何幫助醫療影像或文本數據做出有用的決策。為此,對於可靠的深度學習模型的需求,如神經網絡(Neural networks)、卷積神經網絡(Convolutional neural network)、反向傳播(Backpropagation)、遞迴神經網絡(Recurrent neural network),在醫療影像處理中日益增加,例如:將黑白X光影像上色、自動機器翻譯、照片/影像中的物體分類(CT-SCAN)、字符或有用生成(ECG)、影像標題生成等。因此,可靠的深度學習方法在感知或產生更好結果方面對於電子健康應用(e-healthcare applications)非常有效,這是當今的挑戰。為此,本書提供了一些可靠的深度學習或深度神經網絡模型,針對全球各地的醫療應用進行章節收錄。總之,本書將涵蓋介紹、需求、重要性、問題與挑戰等,針對當前可用的深度學習模型所面臨的挑戰(也包括創新的深度學習算法/模型用於醫療疾病治療),並為多個研究社群提供機會,包括深度學習模型(針對醫療應用)中的多個研究空白。