Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences
暫譯: 潛在類別與潛在轉換分析:在社會、行為與健康科學中的應用
Lanza, Stephanie T., Collins, Linda M., Bray, Bethany C.
- 出版商: Wiley
- 出版日期: 2021-11-23
- 售價: $4,680
- 貴賓價: 9.5 折 $4,446
- 語言: 英文
- 頁數: 360
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1119692830
- ISBN-13: 9781119692836
海外代購書籍(需單獨結帳)
相關主題
商品描述
Since the first edition of this book was released, there have been several advances in the methodological literature that address practical challenges to applying Latent class analysis (LCA) and Latent transition analysis (LTA) in real-world data. A second edition of this book is necessary and timely so that these topics can be included. This new edition continues to provide a comprehensive introduction to LCA and LTA for categorical data. This book also continues to cover more advanced material, including multiple-group analyses and models involving covariates. The second edition provides new material on latent profile analysis (LPA) and LCA with an observed outcome. Empirical examples continue to be used frequently to illustrate and reinforce the material, and a data analyst's perspective continues to be taken throughout. This book is aimed at advanced graduate students and can be used as a textbook in a course on categorical data analysis or latent variable models. It is also suitable as an advanced introduction to LCA and LTA for scientists who wish to apply these approaches in empirical data. This book continues to assume that readers have some familiarity with analysis of contingency tables and with logistic regression. Readers will need a background equivalent to about two semesters of graduate level statistics for the social, behavioral, or biomedical sciences.
商品描述(中文翻譯)
自本書第一版發行以來,方法論文獻中出現了幾項進展,這些進展針對在實際數據中應用潛在類別分析(Latent Class Analysis, LCA)和潛在轉換分析(Latent Transition Analysis, LTA)所面臨的實際挑戰。第二版的出版是必要且及時的,以便將這些主題納入其中。本新版本繼續提供對於類別數據的LCA和LTA的全面介紹。本書也持續涵蓋更高級的內容,包括多組分析和涉及協變量的模型。第二版提供了有關潛在輪廓分析(Latent Profile Analysis, LPA)和具有觀察結果的LCA的新材料。實證範例仍然被頻繁使用,以說明和強化材料,並且整體上仍然採取數據分析師的視角。本書的目標讀者為高級研究生,並可作為類別數據分析或潛在變量模型課程的教科書。對於希望在實證數據中應用這些方法的科學家來說,本書也適合作為LCA和LTA的高級入門書籍。本書假設讀者對於列聯表分析和邏輯回歸有一定的熟悉程度。讀者需要具備相當於社會科學、行為科學或生物醫學科學的兩學期研究生統計學的背景。