Big Data Science in Finance
暫譯: 金融中的大數據科學

Aldridge, Irene, Avellaneda, M.

  • 出版商: Wiley
  • 出版日期: 2021-01-27
  • 售價: $4,290
  • 貴賓價: 9.5$4,076
  • 語言: 英文
  • 頁數: 400
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 111960298X
  • ISBN-13: 9781119602989
  • 相關分類: 大數據 Big-dataData Science
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Explains the mathematics, theory, and methods of Big Data as applied to finance and investing

Data science has fundamentally changed Wall Street--applied mathematics and software code are increasingly driving finance and investment-decision tools. Big Data Science in Finance examines the mathematics, theory, and practical use of the revolutionary techniques that are transforming the industry. Designed for mathematically-advanced students and discerning financial practitioners alike, this energizing book presents new, cutting-edge content based on world-class research taught in the leading Financial Mathematics and Engineering programs in the world. Marco Avellaneda, a leader in quantitative finance, and quantitative methodology author Irene Aldridge help readers harness the power of Big Data.

Comprehensive in scope, this book offers in-depth instruction on how to separate signal from noise, how to deal with missing data values, and how to utilize Big Data techniques in decision-making. Key topics include data clustering, data storage optimization, Big Data dynamics, Monte Carlo methods and their applications in Big Data analysis, and more. This valuable book:

  • Provides a complete account of Big Data that includes proofs, step-by-step applications, and code samples
  • Explains the difference between Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)
  • Covers vital topics in the field in a clear, straightforward manner
  • Compares, contrasts, and discusses Big Data and Small Data
  • Includes Cornell University-tested educational materials such as lesson plans, end-of-chapter questions, and downloadable lecture slides

Big Data Science in Finance: Mathematics and Applications is an important, up-to-date resource for students in economics, econometrics, finance, applied mathematics, industrial engineering, and business courses, and for investment managers, quantitative traders, risk and portfolio managers, and other financial practitioners.

商品描述(中文翻譯)

解釋大數據在金融和投資中的數學、理論和方法

數據科學根本改變了華爾街——應用數學和軟體程式碼越來越多地驅動金融和投資決策工具。《Big Data Science in Finance》探討了正在改變行業的革命性技術的數學、理論和實際應用。本書旨在為數學基礎扎實的學生和有眼光的金融從業者提供新穎的、前沿的內容,這些內容基於世界一流的研究,並在全球領先的金融數學和工程課程中教授。量化金融領域的領導者Marco Avellaneda和量化方法論作者Irene Aldridge幫助讀者掌握大數據的力量。

本書範圍廣泛,深入講解如何從噪音中分離信號、如何處理缺失數據值,以及如何在決策中利用大數據技術。主要主題包括數據聚類、數據存儲優化、大數據動態、蒙地卡羅方法及其在大數據分析中的應用等。本書的價值在於:


  • 提供完整的大數據說明,包括證明、逐步應用和程式碼範例

  • 解釋主成分分析(Principal Component Analysis, PCA)和奇異值分解(Singular Value Decomposition, SVD)之間的區別

  • 以清晰、直接的方式涵蓋該領域的重要主題

  • 比較、對比並討論大數據和小數據

  • 包括康奈爾大學測試的教育材料,如教學計劃、章末問題和可下載的講義幻燈片

《Big Data Science in Finance: Mathematics and Applications》是經濟學、計量經濟學、金融、應用數學、工業工程和商業課程的學生,以及投資經理、量化交易員、風險和投資組合經理和其他金融從業者的重要、最新資源。