Keras to Kubernetes: The Journey of a Machine Learning Model to Production
暫譯: 從 Keras 到 Kubernetes:機器學習模型的生產之旅

Dattaraj Rao

買這商品的人也買了...

商品描述

Build a Keras model to scale and deploy on a Kubernetes cluster

We have seen an exponential growth in the use of Artificial Intelligence (AI) over last few years. AI is becoming the new electricity and is touching every industry from retail to manufacturing to healthcare to entertainment. Within AI, we're seeing a particular growth in Machine Learning (ML) and Deep Learning (DL) applications. ML is all about learning relationships from labeled (Supervised) or unlabeled data (Unsupervised). DL has many layers of learning and can extract patterns from unstructured data like images, video, audio, etc.

Keras to Kubernetes: The Journey of a Machine Learning Model to Production takes you through real-world examples of building DL models in Keras for recognizing product logos in images and extracting sentiment from text. You will then take that trained model and package it as a web application container before learning how to deploy this model at scale on a Kubernetes cluster. You will understand the different practical steps involved in real-world ML implementations which go beyond the algorithms.

- Find hands-on learning examples

- Learn to uses Keras and Kubernetes to deploy Machine Learning models

- Discover new ways to collect and manage your image and text data with Machine Learning

- Reuse examples as-is to deploy your models

- Understand the ML model development lifecycle and deployment to production

If you're ready to learn about one of the most popular DL frameworks and build production applications with it, you've come to the right place

商品描述(中文翻譯)

建立 Keras 模型以在 Kubernetes 集群上擴展和部署

在過去幾年中,人工智慧 (AI) 的使用呈指數增長。AI 正在成為新的電力,影響著從零售到製造、從醫療到娛樂的每個行業。在 AI 之中,我們看到機器學習 (ML) 和深度學習 (DL) 應用的特別增長。ML 專注於從標記的(監督式)或未標記的數據(非監督式)中學習關係。DL 擁有多層學習,能夠從非結構化數據中提取模式,例如圖像、視頻、音頻等。

《Keras 到 Kubernetes:機器學習模型的生產之旅》帶您通過實際案例,構建 Keras 中的 DL 模型,以識別圖像中的產品標誌並從文本中提取情感。然後,您將把訓練好的模型打包為網絡應用容器,然後學習如何在 Kubernetes 集群上大規模部署此模型。您將了解實際 ML 實現中涉及的不同步驟,這些步驟超越了算法。

- 找到實作學習範例
- 學習如何使用 Keras 和 Kubernetes 部署機器學習模型
- 探索使用機器學習收集和管理圖像及文本數據的新方法
- 直接重用範例以部署您的模型
- 了解 ML 模型開發生命周期及其生產部署

如果您準備好學習最受歡迎的 DL 框架之一並使用它構建生產應用,您來對地方了。

作者簡介

DATTARAJ JAGDISH RAO is a Principal Architect at GE Transportation (now a part of Wabtec Corporation). He has been with GE for 19 years working for Global Research, Energy and Transportation. Currently, he leads the Artificial Intelligence (AI) strategy for the global business, which involves identifying AI-growth opportunities to drive outcomes like Predictive Maintenance, Machine Vision and Digital Twins. He is building a Kubernetes based platform that aims at bridging the gap between data science and production software. He led the Innovation team out of Bangalore that incubated video Track-inspection from idea into a commercial Product. Dattaraj has 11 patents in Machine Learning and Computer Vision.

作者簡介(中文翻譯)

DATTARAJ JAGDISH RAO 是 GE Transportation(現為 Wabtec Corporation 的一部分)的首席架構師。他在 GE 工作了 19 年,曾任職於全球研究、能源和交通部門。目前,他負責全球業務的人工智慧(AI)策略,這包括識別 AI 成長機會,以推動預測性維護、機器視覺和數位雙胞胎等成果。他正在建立一個基於 Kubernetes 的平台,旨在縮短數據科學與生產軟體之間的差距。他曾領導來自班加羅爾的創新團隊,將視頻軌道檢查的想法孵化為商業產品。Dattaraj 在機器學習和計算機視覺方面擁有 11 項專利。