Recent Advances in Hybrid Metaheuristics for Data Clustering
暫譯: 數據聚類的混合元啟發式方法近期進展
de, Sourav, Dey, Sandip, Bhattacharyya, Siddhartha
- 出版商: Wiley
- 出版日期: 2020-08-24
- 售價: $5,170
- 貴賓價: 9.5 折 $4,912
- 語言: 英文
- 頁數: 200
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1119551595
- ISBN-13: 9781119551591
海外代購書籍(需單獨結帳)
相關主題
商品描述
An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques
Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors--noted experts on the topic--provide a text that can aid in the design and development of hybrid metaheuristics to be applied to data clustering.
The book includes performance analysis of the hybrid metaheuristics in relationship to their conventional counterparts. In addition to providing a review of data clustering, the authors include in-depth analysis of different optimization algorithms. The text offers a step-by-step guide in the build-up of hybrid metaheuristics and to enhance comprehension. In addition, the book contains a range of real-life case studies and their applications. This important text:
- Includes performance analysis of the hybrid metaheuristics as related to their conventional counterparts
- Offers an in-depth analysis of a range of optimization algorithms
- Highlights a review of data clustering
- Contains a detailed overview of different standard metaheuristics in current use
- Presents a step-by-step guide to the build-up of hybrid metaheuristics
- Offers real-life case studies and applications
Written for researchers, students and academics in computer science, mathematics, and engineering, Recent Advances in Hybrid Metaheuristics for Data Clustering provides a text that explores the current data clustering approaches using a range of computational intelligence techniques.
商品描述(中文翻譯)
深入分析各種最先進數據聚類方法的權威指南,使用多種計算智能技術
數據聚類的混合元啟發式方法的最新進展 提供了各種元啟發式方法的基本原理及其在數據聚類中的應用。元啟發式方法旨在解決傳統聚類算法無法有效或高效處理的複雜聚類問題。作者是該領域的知名專家,提供了一本能夠幫助設計和開發應用於數據聚類的混合元啟發式方法的文本。
本書包括混合元啟發式方法與其傳統對應方法的性能分析。除了提供數據聚類的回顧外,作者還深入分析了不同的優化算法。該文本提供了混合元啟發式方法的逐步構建指南,以增強理解。此外,本書包含一系列現實案例研究及其應用。這本重要的文本:
- 包括混合元啟發式方法與其傳統對應方法的性能分析
- 提供對多種優化算法的深入分析
- 重點回顧數據聚類
- 包含當前使用的不同標準元啟發式方法的詳細概述
- 提供混合元啟發式方法的逐步構建指南
- 提供現實案例研究及應用
本書為計算機科學、數學和工程領域的研究人員、學生和學者而寫,數據聚類的混合元啟發式方法的最新進展 提供了一本探索當前數據聚類方法的文本,使用多種計算智能技術。
作者簡介
Sourav De, PhD, is an Associate Professor of Computer Science and Engineering at Cooch Behar Government Engineering College, West Bengal, India.
Sandip Dey, PhD, is an Assistant Professor of Computer Science at Sukanta Mahavidyalaya, Dhupguri, Jalpaiguri, India.
Siddhartha Bhattacharyya, PhD, is a Professor of Computer Science and Engineering at CHRIST (Deemed to be University), Bangalore, India.
作者簡介(中文翻譯)
Sourav De,博士,是印度西孟加拉邦Cooch Behar政府工程學院的計算機科學與工程副教授。
Sandip Dey,博士,是印度Jalpaiguri的Dhupguri Sukanta Mahavidyalaya的計算機科學助理教授。
Siddhartha Bhattacharyya,博士,是印度班加羅爾的基督大學(被認定為大學)的計算機科學與工程教授。