Regression for Predictive Analytics: Parametric and Nonparametric Regression
暫譯: 預測分析的迴歸:參數與非參數迴歸

Tamhane, Ajit C., Malthouse, Edward C.

  • 出版商: Wiley
  • 出版日期: 2020-10-13
  • 售價: $3,750
  • 貴賓價: 9.5$3,563
  • 語言: 英文
  • 頁數: 352
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1118948890
  • ISBN-13: 9781118948897
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Provides a foundation in classical parametric methods of regression and classification essential for pursuing advanced topics in predictive analytics and statistical learning

This book covers a broad range of topics in parametric regression and classification including multiple regression, logistic regression (binary and multinomial), discriminant analysis, Bayesian classification, generalized linear models and Cox regression for survival data. The book also gives brief introductions to some modern computer-intensive methods such as classification and regression trees (CART), neural networks and support vector machines.

The book is organized so that it can be used by both advanced undergraduate or masters students with applied interests and by doctoral students who also want to learn the underlying theory. This is done by devoting the main body of the text of each chapter with basic statistical methodology illustrated by real data examples. Derivations, proofs and extensions are relegated to the Technical Notes section of each chapter, Exercises are also divided into theoretical and applied. Answers to selected exercises are provided. A solution manual is available to instructors who adopt the text.

Data sets of moderate to large sizes are used in examples and exercises. They come from a variety of disciplines including business (finance, marketing and sales), economics, education, engineering and sciences (biological, health, physical and social). All data sets are available at the book's web site. Open source software R is used for all data analyses. R codes and outputs are provided for most examples. R codes are also available at the book's web site.

Predictive Analytics: Parametric Models for Regression and Classification Using R is ideal for a one-semester upper-level undergraduate and/or beginning level graduate course in regression for students in business, economics, finance, marketing, engineering, and computer science. It is also an excellent resource for practitioners in these fields.

商品描述(中文翻譯)

提供了經典參數方法的回歸和分類基礎,這對於深入研究預測分析和統計學習的高級主題至關重要。

本書涵蓋了參數回歸和分類的廣泛主題,包括多元回歸、邏輯回歸(二元和多項式)、判別分析、貝葉斯分類、廣義線性模型以及用於生存數據的Cox回歸。書中還簡要介紹了一些現代計算密集型方法,如分類和回歸樹(CART)、神經網絡和支持向量機。

本書的組織方式使其適合於有應用興趣的高年級本科生或碩士生,以及希望學習基礎理論的博士生。這是通過將每章的主要內容專注於基本統計方法,並用真實數據示例進行說明來實現的。推導、證明和擴展則被放置在每章的技術註釋部分,練習題也分為理論和應用兩類。選定練習題的答案已提供。對於採用本書的教師,還提供了解答手冊。

示例和練習中使用的數據集大小適中到大型,來自多個學科,包括商業(金融、行銷和銷售)、經濟學、教育、工程和科學(生物、健康、物理和社會)。所有數據集均可在本書的網站上獲得。所有數據分析均使用開源軟體R進行。大多數示例提供了R代碼和輸出,R代碼也可在本書的網站上獲得。

《預測分析:使用R的回歸和分類參數模型》非常適合於一學期的高年級本科生和/或初級研究生的回歸課程,適合商業、經濟學、金融、行銷、工程和計算機科學的學生。對於這些領域的從業者來說,它也是一個極好的資源。

作者簡介

Ajit C. Tamhane, PhD, is Professor of Industrial Engineering & Management Sciences with a courtesy appointment in Statistics at Northwestern University. He is a fellow of the American Statistical Association, Institute of Mathematical Statistics, American Association for Advancement of Science and an elected member of the International Statistical Institute.

作者簡介(中文翻譯)

Ajit C. Tamhane, PhD, 是西北大學工業工程與管理科學系的教授,並在統計學系擔任兼任職位。他是美國統計協會、數學統計學會、美國科學促進會的會士,並且是國際統計學會的當選會員。