Robust Correlation: Theory and Applications (Wiley Series in Probability and Statistics)
暫譯: 穩健相關:理論與應用(Wiley 機率與統計系列)

Georgy L. Shevlyakov, Hannu Oja

  • 出版商: Wiley
  • 出版日期: 2016-09-19
  • 售價: $4,070
  • 貴賓價: 9.5$3,867
  • 語言: 英文
  • 頁數: 352
  • 裝訂: Hardcover
  • ISBN: 1118493451
  • ISBN-13: 9781118493458
  • 相關分類: 機率統計學 Probability-and-statistics
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This bookpresents material on both the analysis of the classical concepts of correlation and on the development of their robust versions, as well as discussing the related concepts of correlation matrices, partial correlation, canonical correlation, rank correlations, with the corresponding robust and non-robust estimation procedures. Every chapter contains a set of examples with simulated and real-life data.

Key features:

  • Makes modern and robust correlation methods readily available and understandable to practitioners, specialists, and consultants working in various fields.
  • Focuses on implementation of methodology and application of robust correlation with R.
  • Introduces the main approaches in robust statistics, such as Huber’s minimax approach and Hampel’s approach based on influence functions.
  • Explores various robust estimates of the correlation coefficient including the minimax variance and bias estimates as well as the most B- and V-robust estimates.
  • Contains applications of robust correlation methods to exploratory data analysis, multivariate statistics, statistics of time series, and to real-life data.
  • Includes an accompanying website featuring computer code and datasets
  • Features exercises and examples throughout the text using both small and large data sets.

Theoretical and applied statisticians, specialists in multivariate statistics, robust statistics, robust time series analysis, data analysis and signal processing will benefit from this book. Practitioners who use correlation based methods in their work as well as postgraduate students in statistics will also find this book useful.

商品描述(中文翻譯)

這本書介紹了關於經典相關性概念分析的材料,以及其穩健版本的發展,並討論了相關的概念,如相關矩陣、部分相關、典型相關、秩相關,並提供相應的穩健和非穩健估計程序。每一章都包含一組使用模擬和實際數據的範例。

**主要特點:**
- 使現代和穩健的相關性方法對於在各個領域工作的實務者、專家和顧問變得易於獲得和理解。
- 專注於方法論的實施和使用 R 進行穩健相關的應用。
- 介紹穩健統計的主要方法,如 Huber 的最小最大方法和基於影響函數的 Hampel 方法。
- 探索各種相關係數的穩健估計,包括最小最大方差和偏差估計,以及最 B- 和 V-穩健估計。
- 包含穩健相關方法在探索性數據分析、多變量統計、時間序列統計和實際數據中的應用。
- 附有網站,提供計算機代碼和數據集。
- 在文本中包含使用小型和大型數據集的練習和範例。

理論和應用統計學家、多變量統計、穩健統計、穩健時間序列分析、數據分析和信號處理的專家將從這本書中受益。使用基於相關性的方法的實務者以及統計學的研究生也會發現這本書非常有用。