Algorithmic High-Dimensional Robust Statistics (Hardcover)
暫譯: 演算法高維穩健統計學 (精裝版)

Diakonikolas, Ilias, Kane, Daniel M.

相關主題

商品描述

Robust statistics is the study of designing estimators that perform well even when the dataset significantly deviates from the idealized modeling assumptions, such as in the presence of model misspecification or adversarial outliers in the dataset. The classical statistical theory, dating back to pioneering works by Tukey and Huber, characterizes the information-theoretic limits of robust estimation for most common problems. A recent line of work in computer science gave the first computationally efficient robust estimators in high dimensions for a range of learning tasks. This reference text for graduate students, researchers, and professionals in machine learning theory, provides an overview of recent developments in algorithmic high-dimensional robust statistics, presenting the underlying ideas in a clear and unified manner, while leveraging new perspectives on the developed techniques to provide streamlined proofs of these results. The most basic and illustrative results are analyzed in each chapter, while more tangential developments are explored in the exercises.

商品描述(中文翻譯)

穩健統計學是研究設計估計量的學科,即使在數據集顯著偏離理想建模假設的情況下(例如,模型錯誤規範或數據集中的對抗性異常值),也能表現良好。經典統計理論可追溯至Tukey和Huber的開創性工作,描述了穩健估計在大多數常見問題中的信息理論極限。計算機科學中的一項近期研究工作首次提供了高維度下針對多種學習任務的計算效率高的穩健估計量。本書是針對研究生、研究人員和機器學習理論專業人士的參考文本,概述了算法高維穩健統計的最新發展,以清晰且統一的方式呈現基本概念,同時利用對所開發技術的新視角來提供這些結果的簡化證明。每一章分析了最基本且具說明性的結果,而更邊緣的發展則在練習題中進行探討。