Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing (Paperback)
Kohavi, Ron, Tang, Diane, Xu, Ya
- 出版商: Cambridge
- 出版日期: 2020-04-02
- 售價: $1,760
- 貴賓價: 9.5 折 $1,672
- 語言: 英文
- 頁數: 200
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1108724264
- ISBN-13: 9781108724265
-
相關分類:
Data-mining
-
相關翻譯:
關鍵迭代:可信賴的線上對照實驗 (簡中版)
買這商品的人也買了...
-
$2,750$2,613 -
$3,500$3,325 -
$2,710$2,656 -
$2,993The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2/e (Hardcover)
-
$500$395 -
$580$452 -
$520$442 -
$520$442 -
$1,800$1,710 -
$2,204$2,088 -
$454超大流量分佈式系統架構解決方案:人人都是架構師2.0
-
$1,480$1,450 -
$594$564 -
$2,622$2,484 -
$2,070Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and Mlops (Paperback)
-
$540$405 -
$1,460$1,387 -
$2,170$2,062 -
$2,900$2,755 -
$2,650$2,597 -
$2,115Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications (Paperback)
-
$2,223$2,106 -
$1,500$1,425 -
$2,594$2,457 -
$2,835Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3/e (Paperback)
相關主題
商品描述
Getting numbers is easy; getting numbers you can trust is hard. This practical guide by experimentation leaders at Google, LinkedIn, and Microsoft will teach you how to accelerate innovation using trustworthy online controlled experiments, or A/B tests. Based on practical experiences at companies that each run more than 20,000 controlled experiments a year, the authors share examples, pitfalls, and advice for students and industry professionals getting started with experiments, plus deeper dives into advanced topics for practitioners who want to improve the way they make data-driven decisions. Learn how to - Use the scientific method to evaluate hypotheses using controlled experiments - Define key metrics and ideally an Overall Evaluation Criterion - Test for trustworthiness of the results and alert experimenters to violated assumptions - Build a scalable platform that lowers the marginal cost of experiments close to zero - Avoid pitfalls like carryover effects and Twyman's law - Understand how statistical issues play out in practice.
商品描述(中文翻譯)
獲取數據很容易,但獲取可信賴的數據卻很困難。這本實用指南由Google、LinkedIn和Microsoft的實驗領導者撰寫,將教你如何使用可信賴的在線控制實驗或A/B測試來加速創新。根據每年進行超過20,000個控制實驗的公司的實際經驗,作者分享了例子、陷阱和建議,適用於初學者以及希望改進數據驅動決策方式的從業人員。學習如何:- 使用科學方法通過控制實驗評估假設- 定義關鍵指標和理想的總體評估標準- 測試結果的可信度並提醒實驗者違反的假設- 構建一個可擴展的平台,將實驗的邊際成本降低到接近零- 避免諸如carryover效應和Twyman's法則等陷阱- 了解統計問題在實踐中的應用。