Scaling up Machine Learning: Parallel and Distributed Approaches (Paperback)
暫譯: 擴展機器學習:平行與分散式方法 (平裝本)
- 出版商: Cambridge
- 出版日期: 2018-03-29
- 售價: $1,360
- 貴賓價: 9.5 折 $1,292
- 語言: 英文
- 頁數: 491
- 裝訂: Paperback
- ISBN: 1108461743
- ISBN-13: 9781108461740
-
相關分類:
Machine Learning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,000$900 -
$250超標量處理器設計
-
$594$564 -
$1,960Large-Scale and Distributed Optimization (Lecture Notes in Mathematics)
-
$650$553 -
$420$331 -
$300$255 -
$520$442 -
$280特徵工程入門與實踐 (Feature Engineering Made Easy)
-
$680$578 -
$480$379 -
$880$695 -
$380$342 -
$580$458 -
$680$476 -
$690$345 -
$378產品經理方法論 構建完整的產品知識體系
-
$419$398 -
$403中台產品經理:數字化轉型復雜產品架構案例實戰
-
$390$332 -
$760$380 -
$948$901 -
$880$695 -
$630$498 -
$580$458
相關主題
商品描述
This book presents an integrated collection of representative approaches for scaling up machine learning and data mining methods on parallel and distributed computing platforms. Demand for parallelizing learning algorithms is highly task-specific: in some settings it is driven by the enormous dataset sizes, in others by model complexity or by real-time performance requirements. Making task-appropriate algorithm and platform choices for large-scale machine learning requires understanding the benefits, trade-offs, and constraints of the available options. Solutions presented in the book cover a range of parallelization platforms from FPGAs and GPUs to multi-core systems and commodity clusters, concurrent programming frameworks including CUDA, MPI, MapReduce, and DryadLINQ, and learning settings (supervised, unsupervised, semi-supervised, and online learning). Extensive coverage of parallelization of boosted trees, SVMs, spectral clustering, belief propagation and other popular learning algorithms and deep dives into several applications make the book equally useful for researchers, students, and practitioners.
商品描述(中文翻譯)
本書呈現了一系列整合的代表性方法,旨在於平行和分散式計算平台上擴展機器學習和資料探勘技術。對於平行化學習演算法的需求高度依賴於特定任務:在某些情境中,這是由於龐大的資料集大小所驅動,而在其他情境中則是由於模型的複雜性或即時性能要求。為了在大規模機器學習中做出適合任務的演算法和平台選擇,需要理解可用選項的優勢、權衡和限制。本書中提出的解決方案涵蓋了從FPGA和GPU到多核心系統和商用叢集的各種平行化平台,並包括CUDA、MPI、MapReduce和DryadLINQ等並行程式設計框架,以及學習設定(監督式、非監督式、半監督式和在線學習)。對於增強樹、支持向量機(SVM)、光譜聚類、信念傳播及其他流行學習演算法的平行化進行了廣泛的探討,並深入探討了幾個應用案例,使本書對研究人員、學生和實務工作者同樣具有價值。