Compressive Imaging: Structure, Sampling, Learning
暫譯: 壓縮成像:結構、取樣、學習

Adcock, Ben, Hansen, Anders C.

  • 出版商: Cambridge
  • 出版日期: 2021-09-16
  • 售價: $3,280
  • 貴賓價: 9.5$3,116
  • 語言: 英文
  • 頁數: 300
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 110842161X
  • ISBN-13: 9781108421614
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Accurate, robust and fast image reconstruction is a critical task in many scientific, industrial and medical applications. Over the last decade, image reconstruction has been revolutionized by the rise of compressive imaging. It has fundamentally changed the way modern image reconstruction is performed. This in-depth treatment of the subject commences with a practical introduction to compressive imaging, supplemented with examples and downloadable code, intended for readers without extensive background in the subject. Next, it introduces core topics in compressive imaging - including compressed sensing, wavelets and optimization - in a concise yet rigorous way, before providing a detailed treatment of the mathematics of compressive imaging. The final part is devoted to recent trends in compressive imaging: deep learning and neural networks. With an eye to the next decade of imaging research, and using both empirical and mathematical insights, it examines the potential benefits and the pitfalls of these latest approaches.

商品描述(中文翻譯)

準確、穩健且快速的影像重建在許多科學、工業和醫療應用中都是一項關鍵任務。在過去十年中,隨著壓縮影像技術的興起,影像重建已經發生了革命性的變化。這一變化從根本上改變了現代影像重建的執行方式。本書對該主題進行深入探討,首先提供了壓縮影像的實用介紹,並附有範例和可下載的程式碼,旨在幫助對該主題沒有廣泛背景的讀者。接下來,書中以簡潔而嚴謹的方式介紹了壓縮影像的核心主題,包括壓縮感知(compressed sensing)、小波(wavelets)和優化(optimization),然後詳細探討了壓縮影像的數學基礎。最後一部分專注於壓縮影像的最新趨勢:深度學習(deep learning)和神經網絡(neural networks)。展望未來十年的影像研究,並結合實證和數學見解,探討這些最新方法的潛在好處和陷阱。