Secure Multiparty Computation and Secret Sharing
Ronald Cramer, Ivan Bjerre Damgård, Jesper Buus Nielsen
- 出版商: Cambridge
- 出版日期: 2015-07-15
- 定價: $2,500
- 售價: 9.0 折 $2,250
- 語言: 英文
- 頁數: 381
- 裝訂: Hardcover
- ISBN: 1107043050
- ISBN-13: 9781107043053
-
相關分類:
大數據 Big-data、資訊安全
立即出貨
買這商品的人也買了...
-
$2,500$2,450 -
$980$774 -
$779$740 -
$1,260$1,235 -
$980$774 -
$648$616 -
$1,660$1,577 -
$834$792 -
$500$390 -
$3,430Computer Architecture : A Quantitative Approach, 6/e (Paperback)
-
$301區塊鏈 2.0 以太坊應用開發指南
-
$269深度學習:從入門到實戰
-
$780$663 -
$580$493 -
$454Hyperledger Fabric 源代碼分析與深入解讀
-
$1,750$1,663 -
$2,400$2,280 -
$600$474
相關主題
商品描述
In a data-driven society, individuals and companies encounter numerous situations where private information is an important resource. How can parties handle confidential data if they do not trust everyone involved? This text is the first to present a comprehensive treatment of unconditionally secure techniques for multiparty computation (MPC) and secret sharing. In a secure MPC, each party possesses some private data, while secret sharing provides a way for one party to spread information on a secret such that all parties together hold full information, yet no single party has all the information. The authors present basic feasibility results from the last 30 years, generalizations to arbitrary access structures using linear secret sharing, some recent techniques for efficiency improvements, and a general treatment of the theory of secret sharing, focusing on asymptotic results with interesting applications related to MPC.
商品描述(中文翻譯)
在一個數據驅動的社會中,個人和公司在許多情況下會遇到私人信息是一個重要資源的情況。如果各方不信任參與其中的每個人,他們該如何處理機密數據?本文是首次全面介紹多方計算(MPC)和秘密分享的無條件安全技術。在安全的MPC中,每個參與方擁有一些私人數據,而秘密分享提供了一種方法,讓一方將秘密信息分散給所有參與方,使得所有參與方共同擁有完整的信息,但沒有任何一方擁有全部信息。作者們介紹了過去30年的基本可行性結果,使用線性秘密分享對任意訪問結構進行的概括,一些最近的效率改進技術,以及對秘密分享理論的一般處理,重點關注與MPC相關的有趣應用的漸近結果。