Potential Theory and Geometry on Lie Groups
暫譯: 李群上的潛能理論與幾何學

Varopoulos, N. Th

  • 出版商: Cambridge
  • 出版日期: 2020-10-22
  • 售價: $7,580
  • 貴賓價: 9.5$7,201
  • 語言: 英文
  • 頁數: 611
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1107036496
  • ISBN-13: 9781107036499
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book provides a complete and reasonably self-contained account of a new classification of connected Lie groups into two classes. The first part describes the use of tools from potential theory to establish the classification and to show that the analytic and algebraic approaches to the classification are equivalent. Part II covers geometric theory of the same classification and a proof that it is equivalent to the algebraic approach. Part III is a new approach to the geometric classification that requires more advanced geometric technology, namely homotopy, homology and the theory of currents. Using these methods, a more direct, but also more sophisticated, approach to the equivalence of the geometric and algebraic classification is made. Background material is introduced gradually to familiarise readers with ideas from areas such as Lie groups, differential topology and probability, in particular, random walks on groups. Numerous open problems inspire students to explore further.

商品描述(中文翻譯)

本書提供了一個完整且相對自足的連通李群新分類的說明,將其分為兩個類別。第一部分描述了如何使用潛能理論的工具來建立分類,並顯示分析方法和代數方法在分類上的等價性。第二部分涵蓋了相同分類的幾何理論,以及證明其與代數方法等價的過程。第三部分則是一種新的幾何分類方法,這需要更高級的幾何技術,即同倫(homotopy)、同調(homology)和流(currents)理論。利用這些方法,對幾何與代數分類的等價性進行了更直接但也更複雜的探討。背景材料逐步引入,以幫助讀者熟悉來自李群、微分拓撲和概率等領域的概念,特別是群上的隨機漫步。許多未解的問題激勵學生進一步探索。