Kernel Methods and Machine Learning (核心方法與機器學習)
S. Y. Kung
- 出版商: Cambridge
- 出版日期: 2014-06-23
- 售價: $3,160
- 貴賓價: 9.5 折 $3,002
- 語言: 英文
- 頁數: 572
- 裝訂: Hardcover
- ISBN: 110702496X
- ISBN-13: 9781107024960
-
相關分類:
Machine Learning
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$880$695 -
$550$435 -
$800$632 -
$560$437 -
$1,200$948 -
$2,930$2,784 -
$490$382 -
$400$380 -
$680$578 -
$780$616 -
$650$618 -
$350$277 -
$490$417 -
$580$452 -
$520$411 -
$480$379 -
$780$616 -
$360$284 -
$480$379 -
$820$697 -
$590$502 -
$680$537 -
$490$382 -
$820$697 -
$520$411
相關主題
商品描述
Offering a fundamental basis in kernel-based learning theory, this book covers both statistical and algebraic principles. It provides over 30 major theorems for kernel-based supervised and unsupervised learning models. The first of the theorems establishes a condition, arguably necessary and sufficient, for the kernelization of learning models. In addition, several other theorems are devoted to proving mathematical equivalence between seemingly unrelated models. With over 25 closed-form and iterative algorithms, the book provides a step-by-step guide to algorithmic procedures and analysing which factors to consider in tackling a given problem, enabling readers to improve specifically designed learning algorithms, build models for new applications and develop efficient techniques suitable for green machine learning technologies. Numerous real-world examples and over 200 problems, several of which are Matlab-based simulation exercises, make this an essential resource for graduate students and professionals in computer science, electrical and biomedical engineering. Solutions to problems are provided online for instructors.
商品描述(中文翻譯)
本書提供了基於核心學習理論的基礎知識,涵蓋了統計和代數原理。它提供了30多個關於基於核心的監督和非監督學習模型的主要定理。其中第一個定理建立了一個條件,可以說是核心化學習模型的必要且充分條件。此外,還有幾個定理用於證明看似無關的模型之間的數學等價性。本書提供了25多個閉式和迭代算法,逐步指導讀者進行算法程序和分析,以解決特定問題,從而改進設計的學習算法,構建新應用的模型,並開發適用於綠色機器學習技術的高效技術。大量的實際例子和200多個問題,其中幾個是基於Matlab的模擬練習,使本書成為計算機科學、電氣工程和生物醫學工程的研究生和專業人士的必備資源。問題的解答可以在線上獲得,供教師使用。