Reinforcement Learning for Finance: A Python-Based Introduction (Paperback) (金融強化學習:基於Python的入門指南)
Hilpisch, Yves J.
- 出版商: O'Reilly
- 出版日期: 2024-11-19
- 定價: $2,480
- 售價: 9.5 折 $2,356
- 貴賓價: 9.0 折 $2,232
- 語言: 英文
- 頁數: 212
- 裝訂: Quality Paper - also called trade paper
- ISBN: 109816914X
- ISBN-13: 9781098169145
-
相關分類:
Python、程式語言、Reinforcement、DeepLearning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$480$379 -
$332了不起的 Markdown
-
$880$748 -
$2,300$2,185 -
$2,781Artificial Intelligence in Finance: A Python-Based Guide
-
$2,250$2,138 -
$2,641$2,502 -
$594$564 -
$650$455 -
$305知識圖譜:方法、工具與案例
-
$2,070Training Data for Machine Learning: Human Supervision from Annotation to Data Science
-
$594$564 -
$630$498 -
$2,328$2,205 -
$560$442 -
$500$395 -
$680$537 -
$650$507 -
$1,080$853 -
$620$484 -
$2,641$2,502 -
$560$437
相關主題
商品描述
Reinforcement learning (RL) has led to several breakthroughs in AI. The use of the Q-learning (DQL) algorithm alone has helped people develop agents that play arcade games and board games at a superhuman level. More recently, RL, DQL, and similar methods have gained popularity in publications related to financial research.
This book is among the first to explore the use of reinforcement learning methods in finance.
Author Yves Hilpisch, founder and CEO of The Python Quants, provides the background you need in concise fashion. ML practitioners, financial traders, portfolio managers, strategists, and analysts will focus on the implementation of these algorithms in the form of self-contained Python code and the application to important financial problems.
This book covers:
- Reinforcement learning
- Deep Q-learning
- Python implementations of these algorithms
- How to apply the algorithms to financial problems such as algorithmic trading, dynamic hedging, and dynamic asset allocation
This book is the ideal reference on this topic. You'll read it once, change the examples according to your needs or ideas, and refer to it whenever you work with RL for finance.
Dr. Yves Hilpisch is founder and CEO of The Python Quants, a group that focuses on the use of open source technologies for financial data science, AI, asset management, algorithmic trading, and computational finance.
商品描述(中文翻譯)
強化學習(Reinforcement Learning, RL)在人工智慧領域帶來了幾項突破。僅僅使用 Q-learning(深度 Q-learning, DQL)演算法,就幫助人們開發出能以超人類水平玩街機遊戲和棋盤遊戲的代理程式。最近,RL、DQL 及類似方法在金融研究相關的出版物中越來越受歡迎。
本書是首批探討強化學習方法在金融領域應用的書籍之一。
作者 Yves Hilpisch,The Python Quants 的創辦人兼執行長,以簡潔的方式提供所需的背景知識。機器學習從業者、金融交易員、投資組合經理、策略師和分析師將專注於這些演算法的實作,並以獨立的 Python 代碼形式應用於重要的金融問題。
本書涵蓋的內容包括:
- 強化學習
- 深度 Q-learning
- 這些演算法的 Python 實作
- 如何將演算法應用於金融問題,如算法交易、動態對沖和動態資產配置
本書是該主題的理想參考資料。您可以閱讀一次,根據自己的需求或想法修改範例,並在進行金融相關的 RL 工作時隨時參考。
Dr. Yves Hilpisch 是 The Python Quants 的創辦人兼執行長,該團體專注於開源技術在金融數據科學、人工智慧、資產管理、算法交易和計算金融中的應用。