Ai-Assisted Programming: Better Planning, Coding, Testing, and Deployment (Paperback)
暫譯: AI輔助程式設計:更佳的規劃、編碼、測試與部署(平裝本)
Taulli, Tom
買這商品的人也買了...
-
$700Professional Scrum Development with Microsoft Visual Studio 2012 (Paperback)
-
$1,700$1,700 -
$958深度學習
-
$4,620$4,389 -
$1,650$1,568 -
$420$332 -
$2,050$2,009 -
$500$350 -
$680$476 -
$2,475Software Architecture: The Hard Parts: Modern Trade-Off Analyses for Distributed Architectures (Paperback)
-
$800$680 -
$400$316 -
$780$616 -
$2,185Learning Blazor: Build Single-Page Apps with Webassembly and C# (Paperback)
-
$1,824Mastering API Architecture: Design, Operate, and Evolve Api-Based Systems (Paperback)
-
$600$510 -
$1,710$1,625 -
$580$458 -
$680$476 -
$479$455 -
$1,962Programming with Github Copilot: Write Better Code--Faster! (Paperback)
-
$750$375 -
$780$616 -
$720$562 -
$880$695
相關主題
商品描述
Get practical advice on how to leverage AI development tools for all stages of code creation, including requirements, planning, and design; coding; and debugging, testing, and documentation. With this practical book, beginners and experienced developers alike will learn how to use a wide range of tools, from general-purpose LLMs (ChatGPT, Bard, and Claude) to code-specific systems (GitHub Copilot, Tabnine, Cursor, and Amazon CodeWhisperer).
You'll also learn about more specialized generative AI tools for tasks such as text-to-image creation.
Author Tom Taulli provides a methodology for modular programming that aligns effectively with the way prompts create AI-generated code. This guide also describes the best ways of using general purpose LLMs to learn a programming language, explain code, or convert code from one language to another.
This book examines:
- The core capabilities of AI-based development tools
- Pros, cons, and use cases of popular systems such as GitHub Copilot and Amazon CodeWhisperer
- Ways to use ChatGPT, Bard, Claude, and other generic LLMs for coding
- Using AI development tools for the software development lifecycle, including requirements, planning, coding, debugging, and testing
- Prompt engineering for development
- Using AI-assisted programming for tedious tasks like creating regular expressions making chron jobs and GitHub Actions
- How to use AI-based low-code and no-code tools
商品描述(中文翻譯)
獲得實用建議,了解如何在程式碼創建的各個階段利用 AI 開發工具,包括需求、規劃和設計;編碼;以及除錯、測試和文件編寫。這本實用的書籍將幫助初學者和經驗豐富的開發者學習如何使用各種工具,從通用的 LLM(如 ChatGPT、Bard 和 Claude)到專門針對程式碼的系統(如 GitHub Copilot、Tabnine、Cursor 和 Amazon CodeWhisperer)。
您還將了解更多專門的生成式 AI 工具,用於文本到圖像的創建等任務。
作者 Tom Taulli 提供了一種模組化編程的方法論,與提示生成 AI 生成程式碼的方式有效對齊。本指南還描述了使用通用 LLM 學習程式語言、解釋程式碼或將程式碼從一種語言轉換為另一種語言的最佳方法。
本書探討了:
- 基於 AI 的開發工具的核心能力
- 流行系統(如 GitHub Copilot 和 Amazon CodeWhisperer)的優缺點及使用案例
- 如何使用 ChatGPT、Bard、Claude 和其他通用 LLM 進行編碼
- 在軟體開發生命週期中使用 AI 開發工具,包括需求、規劃、編碼、除錯和測試
- 開發的提示工程
- 使用 AI 輔助編程來處理繁瑣任務,如創建正則表達式、製作 cron 工作和 GitHub Actions
- 如何使用基於 AI 的低代碼和無代碼工具