Deep Learning for Finance: Creating Machine & Deep Learning Models for Trading in Python
暫譯: 金融深度學習:在Python中為交易創建機器學習與深度學習模型
Kaabar, Sofien
- 出版商: O'Reilly
- 出版日期: 2024-02-13
- 定價: $2,450
- 售價: 9.5 折 $2,328
- 語言: 英文
- 頁數: 359
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1098148398
- ISBN-13: 9781098148393
-
相關分類:
Python、程式語言、DeepLearning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$2,300$2,185 -
$2,817Artificial Intelligence in Finance: A Python-Based Guide
-
$2,641Mastering Financial Pattern Recognition: Finding and Back-Testing Candlestick Patterns with Python
-
$2,070Training Data for Machine Learning: Human Supervision from Annotation to Data Science
-
$594$564 -
$630$497 -
$560$442 -
$500$395 -
$680$537 -
$2,689Machine Learning Production Systems: Engineering Machine Learning Models and Pipelines (Paperback)
商品描述
Deep learning is rapidly gaining momentum in the world of finance and trading. But for many professional traders, this sophisticated field has a reputation for being complex and difficult. This hands-on guide teaches you how to develop a deep learning trading model from scratch using Python, and it also helps you create, trade, and back-test trading algorithms based on machine learning and reinforcement learning.
Sofien Kaabar--financial author, trading consultant, and institutional market strategist--introduces deep learning strategies that combine technical and quantitative analyses. By fusing deep learning concepts with technical analysis, this unique book presents out-of-the-box ideas in the world of financial trading. This A-Z guide also includes a full introduction to technical analysis, evaluating machine learning algorithms, and algorithm optimization.
- Create and understand machine learning and deep learning models
- Explore the details behind reinforcement learning and see how it's used in trading
- Understand how to interpret performance evaluation metrics
- Examine technical analysis and learn how it works in financial markets
- Create technical indicators in Python and combine them with ML models for optimization
- Evaluate the profitability and the predictability of the models to understand their limitations and potential
商品描述(中文翻譯)
深度學習在金融和交易領域迅速獲得動能。然而,對於許多專業交易者來說,這個複雜的領域有著難以理解的聲譽。本實用指南教您如何使用 Python 從零開始開發深度學習交易模型,並幫助您基於機器學習和強化學習創建、交易和回測交易算法。
Sofien Kaabar——金融作家、交易顧問和機構市場策略師——介紹了結合技術分析和量化分析的深度學習策略。通過將深度學習概念與技術分析相融合,這本獨特的書籍在金融交易的世界中提出了創新的想法。這本 A-Z 指南還包括技術分析的完整介紹、評估機器學習算法和算法優化。
- 創建和理解機器學習及深度學習模型
- 探索強化學習背後的細節,並了解其在交易中的應用
- 理解如何解釋性能評估指標
- 檢視技術分析並學習其在金融市場中的運作方式
- 在 Python 中創建技術指標,並將其與機器學習模型結合以進行優化
- 評估模型的盈利能力和可預測性,以了解其限制和潛力