Deep Learning for Finance: Creating Machine & Deep Learning Models for Trading in Python
暫譯: 金融深度學習:在Python中為交易創建機器學習與深度學習模型
Kaabar, Sofien
- 出版商: O'Reilly
- 出版日期: 2024-02-13
- 定價: $2,450
- 售價: 8.8 折 $2,156 (限時優惠至 2025-02-02)
- 語言: 英文
- 頁數: 359
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1098148398
- ISBN-13: 9781098148393
-
相關分類:
Python、程式語言、DeepLearning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$2,300$2,185 -
$2,472Artificial Intelligence in Finance: A Python-Based Guide
-
$2,446Mastering Financial Pattern Recognition: Finding and Back-Testing Candlestick Patterns with Python
-
$1,840Training Data for Machine Learning: Human Supervision from Annotation to Data Science
-
$594$564 -
$630$498 -
$560$442 -
$500$395 -
$680$537 -
$2,490Machine Learning Production Systems: Engineering Machine Learning Models and Pipelines (Paperback)
相關主題
商品描述
Deep learning is rapidly gaining momentum in the world of finance and trading. But for many professional traders, this sophisticated field has a reputation for being complex and difficult. This hands-on guide teaches you how to develop a deep learning trading model from scratch using Python, and it also helps you create, trade, and back-test trading algorithms based on machine learning and reinforcement learning.
Sofien Kaabar--financial author, trading consultant, and institutional market strategist--introduces deep learning strategies that combine technical and quantitative analyses. By fusing deep learning concepts with technical analysis, this unique book presents out-of-the-box ideas in the world of financial trading. This A-Z guide also includes a full introduction to technical analysis, evaluating machine learning algorithms, and algorithm optimization.
- Create and understand machine learning and deep learning models
- Explore the details behind reinforcement learning and see how it's used in trading
- Understand how to interpret performance evaluation metrics
- Examine technical analysis and learn how it works in financial markets
- Create technical indicators in Python and combine them with ML models for optimization
- Evaluate the profitability and the predictability of the models to understand their limitations and potential
商品描述(中文翻譯)
深度學習在金融和交易領域迅速獲得動能。然而,對於許多專業交易者來說,這個複雜的領域有著難以理解的聲譽。本實用指南教您如何使用 Python 從零開始開發深度學習交易模型,並幫助您基於機器學習和強化學習創建、交易和回測交易算法。
Sofien Kaabar——金融作家、交易顧問和機構市場策略師——介紹了結合技術分析和量化分析的深度學習策略。通過將深度學習概念與技術分析相融合,這本獨特的書籍在金融交易的世界中提出了創新的想法。這本 A-Z 指南還包括技術分析的完整介紹、評估機器學習算法和算法優化。
- 創建和理解機器學習及深度學習模型
- 探索強化學習背後的細節,並了解其在交易中的應用
- 理解如何解釋性能評估指標
- 檢視技術分析並學習其在金融市場中的運作方式
- 在 Python 中創建技術指標,並將其與機器學習模型結合以進行優化
- 評估模型的盈利能力和可預測性,以了解其限制和潛力