Data Science: The Hard Parts: Techniques for Excelling at Data Science (Paperback)
暫譯: 數據科學:艱難的部分:在數據科學中卓越的技術 (平裝本)
Vaughan, Daniel
- 出版商: O'Reilly
- 出版日期: 2023-12-05
- 定價: $2,310
- 售價: 9.0 折 $2,079
- 語言: 英文
- 頁數: 254
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1098146476
- ISBN-13: 9781098146474
-
相關分類:
Excel、Data Science
-
相關翻譯:
資料科學:困難部分 (Data Science: The Hard Parts: Techniques for Excelling at Data Science) (繁中版)
立即出貨
買這商品的人也買了...
-
$680$537 -
$534$507 -
$2,993Building Knowledge Graphs: A Practitioner's Guide (Paperback)
-
$509Python + Excel/Word/PPT 一本通
-
$834$792 -
$305知識圖譜:方法、工具與案例
-
$980$774 -
$580$458
商品描述
This practical guide provides a collection of techniques and best practices that are generally overlooked in most data engineering and data science pedagogy. A common misconception is that great data scientists are experts in the "big themes" of the discipline--machine learning and programming. But most of the time, these tools can only take us so far. In practice, the smaller tools and skills really separate a great data scientist from a not-so-great one.
Taken as a whole, the lessons in this book make the difference between an average data scientist candidate and a qualified data scientist working in the field. Author Daniel Vaughan has collected, extended, and used these skills to create value and train data scientists from different companies and industries.
With this book, you will:
- Understand how data science creates value
- Deliver compelling narratives to sell your data science project
- Build a business case using unit economics principles
- Create new features for a ML model using storytelling
- Learn how to decompose KPIs
- Perform growth decompositions to find root causes for changes in a metric
Daniel Vaughan is head of data at Clip, the leading paytech company in Mexico. He's the author of Analytical Skills for AI and Data Science (O'Reilly).
商品描述(中文翻譯)
這本實用指南提供了一系列在大多數資料工程和資料科學教學中通常被忽視的技術和最佳實踐。一個常見的誤解是,偉大的資料科學家是該領域「大主題」的專家——機器學習和程式設計。但實際上,這些工具通常只能帶我們走到某個程度。在實踐中,較小的工具和技能真正區分了一位優秀的資料科學家和一位不那麼優秀的資料科學家。
整體而言,本書中的課程使得一位普通的資料科學家候選人與一位在該領域工作的合格資料科學家之間產生了差異。作者丹尼爾·沃恩(Daniel Vaughan)收集、擴展並運用這些技能,為來自不同公司和行業的資料科學家創造價值並進行培訓。
通過本書,您將能夠:
- 理解資料科學如何創造價值
- 提供引人入勝的敘事來推銷您的資料科學專案
- 使用單位經濟學原則建立商業案例
- 利用故事講述為機器學習模型創建新特徵
- 學習如何分解關鍵績效指標(KPI)
- 執行增長分解以找出指標變化的根本原因
丹尼爾·沃恩是墨西哥領先的支付科技公司 Clip 的數據負責人。他是《AI 和資料科學的分析技能》(Analytical Skills for AI and Data Science,O'Reilly)的作者。