Automating Data Quality Monitoring: Scaling Beyond Rules with Machine Learning (Paperback)
暫譯: 自動化數據質量監控:超越規則的機器學習擴展
Stanley, Jeremy, Schwartz, Paige
- 出版商: O'Reilly
- 出版日期: 2024-02-13
- 定價: $2,380
- 售價: 8.8 折 $2,094 (限時優惠至 2025-03-31)
- 語言: 英文
- 頁數: 217
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1098145933
- ISBN-13: 9781098145934
-
相關分類:
Machine Learning
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$479$455 -
$474$450 -
$580$435 -
$580$458 -
$1,074$1,020 -
$2,124Database Internals: A Deep Dive Into How Distributed Data Systems Work (Paperback)
-
$534$507 -
$474$450 -
$454高效能團隊模式:支持軟件快速交付的組織架構 (Team Topologies: Organizing Business and Technology Teams for Fast Flow)
-
$654$621 -
$894$849 -
$834$792 -
$654$621 -
$1,014$963 -
$2,185$2,070 -
$708$673 -
$774$735 -
$509數以達理:量化研發管理指南
-
$834$792 -
$1,881$1,782 -
$2,446Deciphering Data Architectures: Choosing Between a Modern Data Warehouse, Data Fabric, Data Lakehouse, and Data Mesh (Paperback)
-
$1,425$1,350 -
$301基於近鄰思想和同步模型的聚類算法
-
$2,242$2,124 -
$621C++ 之美:代碼簡潔、安全又跑得快的 30個要訣 (Beautiful C++: 30 Core Guidelines for Writing Clean, Safe, and Fast Code)
商品描述
The world's businesses ingest a combined 2.5 quintillion bytes of data every day. But how much of this vast amount of data--used to build products, power AI systems, and drive business decisions--is poor quality or just plain bad? This practical book shows you how to ensure that the data your organization relies on contains only high-quality records.
Most data engineers, data analysts, and data scientists genuinely care about data quality, but they often don't have the time, resources, or understanding to create a data quality monitoring solution that succeeds at scale. In this book, Jeremy Stanley and Paige Schwartz from Anomalo explain how you can use automated data quality monitoring to cover all your tables efficiently, proactively alert on every category of issue, and resolve problems immediately.
This book will help you:
- Learn why data quality is a business imperative
- Understand and assess unsupervised learning models for detecting data issues
- Implement notifications that reduce alert fatigue and let you triage and resolve issues quickly
- Integrate automated data quality monitoring with data catalogs, orchestration layers, and BI and ML systems
- Understand the limits of automated data quality monitoring and how to overcome them
- Learn how to deploy and manage your monitoring solution at scale
- Maintain automated data quality monitoring for the long term
商品描述(中文翻譯)
全球的企業每天處理總計 2.5 數千兆位元組的數據。但是,這龐大的數據量中,有多少是質量不佳或根本不好的呢?這本實用的書籍將教你如何確保你所在組織所依賴的數據僅包含高質量的記錄。
大多數數據工程師、數據分析師和數據科學家都真心關心數據質量,但他們往往沒有時間、資源或理解來創建一個能夠大規模成功的數據質量監控解決方案。在這本書中,來自 Anomalo 的 Jeremy Stanley 和 Paige Schwartz 解釋了如何使用自動化數據質量監控來高效覆蓋所有表格,主動警報每一類問題,並立即解決問題。
這本書將幫助你:
- 了解為什麼數據質量是商業上的必要條件
- 理解和評估用於檢測數據問題的無監督學習模型
- 實施減少警報疲勞的通知,讓你能夠快速分類和解決問題
- 將自動化數據質量監控與數據目錄、編排層以及商業智能(BI)和機器學習(ML)系統整合
- 了解自動化數據質量監控的限制及如何克服這些限制
- 學習如何大規模部署和管理你的監控解決方案
- 長期維護自動化數據質量監控