Deep Learning at Scale: At the Intersection of Hardware, Software, and Data (Paperback)
暫譯: 大規模深度學習:硬體、軟體與數據的交匯點 (平裝本)

Mall, Suneeta

  • 出版商: O'Reilly
  • 出版日期: 2024-07-23
  • 定價: $2,800
  • 售價: 9.5$2,660
  • 語言: 英文
  • 頁數: 448
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1098145283
  • ISBN-13: 9781098145286
  • 相關分類: DeepLearning
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

Bringing a deep-learning project into production at scale is quite challenging. To successfully scale your project, a foundational understanding of full stack deep learning, including the knowledge that lies at the intersection of hardware, software, data, and algorithms, is required.

This book illustrates complex concepts of full stack deep learning and reinforces them through hands-on exercises to arm you with tools and techniques to scale your project. A scaling effort is only beneficial when it's effective and efficient. To that end, this guide explains the intricate concepts and techniques that will help you scale effectively and efficiently.

You'll gain a thorough understanding of:

  • How data flows through the deep-learning network and the role the computation graphs play in building your model
  • How accelerated computing speeds up your training and how best you can utilize the resources at your disposal
  • How to train your model using distributed training paradigms, i.e., data, model, and pipeline parallelism
  • How to leverage PyTorch ecosystems in conjunction with NVIDIA libraries and Triton to scale your model training
  • Debugging, monitoring, and investigating the undesirable bottlenecks that slow down your model training
  • How to expedite the training lifecycle and streamline your feedback loop to iterate model development
  • A set of data tricks and techniques and how to apply them to scale your training model
  • How to select the right tools and techniques for your deep-learning project
  • Options for managing the compute infrastructure when running at scale

商品描述(中文翻譯)

將深度學習專案推向大規模生產是相當具有挑戰性的。要成功擴展您的專案,需要對全棧深度學習有基本的理解,包括硬體、軟體、數據和算法交匯處的知識。

本書闡述了全棧深度學習的複雜概念,並通過實作練習加以強化,讓您掌握擴展專案所需的工具和技術。擴展工作只有在有效且高效的情況下才有益。因此,本指南解釋了幫助您有效且高效擴展的複雜概念和技術。

您將深入了解:

- 數據如何在深度學習網絡中流動,以及計算圖在構建模型中的作用
- 加速計算如何加快您的訓練,以及如何最佳利用您手頭的資源
- 如何使用分散式訓練範式訓練您的模型,即數據、模型和管道並行
- 如何利用 PyTorch 生態系統結合 NVIDIA 庫和 Triton 來擴展您的模型訓練
- 調試、監控和調查減慢模型訓練的瓶頸
- 如何加快訓練生命周期並簡化反饋循環以迭代模型開發
- 一套數據技巧和技術,以及如何應用它們來擴展您的訓練模型
- 如何為您的深度學習專案選擇合適的工具和技術
- 在大規模運行時管理計算基礎設施的選項