Effective Machine Learning Teams: Best Practices for ML Practitioners
暫譯: 有效的機器學習團隊:機器學習從業者的最佳實踐
Tan, David, Leung, Ada, Colls, David
- 出版商: O'Reilly
- 出版日期: 2024-04-09
- 定價: $2,750
- 售價: 8.8 折 $2,420
- 語言: 英文
- 頁數: 399
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1098144635
- ISBN-13: 9781098144630
-
相關分類:
Machine Learning
立即出貨 (庫存 < 4)
相關主題
商品描述
Gain the valuable skills and techniques you need to accelerate the delivery of machine learning solutions. With this practical guide, data scientists and ML engineers will learn how to bridge the gap between data science and Lean software delivery in a practical and simple way. David Tan and Ada Leung from Thoughtworks show you how to apply time-tested software engineering skills and Lean delivery practices that will improve your effectiveness in ML projects.
Based on the authors' experience across multiple real-world data and ML projects, the proven techniques in this book will help teams avoid common traps in the ML world, so you can iterate more quickly and reliably. With these techniques, data scientists and ML engineers can overcome friction and experience flow when delivering machine learning solutions.
This book shows you how to:
- Apply engineering practices such as writing automated tests, containerizing development environments, and refactoring problematic code bases
- Apply MLOps and CI/CD practices to accelerate experimentation cycles and improve reliability of ML solutions
- Design maintainable and evolvable ML solutions that allow you to respond to changes in an agile fashion
- Apply delivery and product practices to iteratively improve your odds of building the right product for your users
- Use intelligent code editor features to code more effectively
商品描述(中文翻譯)
獲得加速交付機器學習解決方案所需的寶貴技能和技術。這本實用指南將幫助資料科學家和機器學習工程師以實際且簡單的方式彌補資料科學與精實軟體交付之間的差距。來自Thoughtworks的David Tan和Ada Leung將向您展示如何應用經過時間考驗的軟體工程技能和精實交付實踐,以提高您在機器學習專案中的效能。
根據作者在多個真實世界資料和機器學習專案中的經驗,本書中的經驗法則將幫助團隊避免機器學習領域中的常見陷阱,讓您能夠更快速且可靠地進行迭代。透過這些技術,資料科學家和機器學習工程師可以克服摩擦,並在交付機器學習解決方案時體驗流暢的工作流程。
本書將教您如何:
- 應用工程實踐,例如撰寫自動化測試、容器化開發環境和重構有問題的程式碼庫
- 應用MLOps和CI/CD實踐以加速實驗週期並提高機器學習解決方案的可靠性
- 設計可維護且可演進的機器學習解決方案,使您能夠靈活應對變化
- 應用交付和產品實踐,逐步提高為用戶構建正確產品的機會
- 使用智能程式碼編輯器功能以更有效地編寫程式碼