Causal Inference in Python: Applying Causal Inference in the Tech Industry (Paperback)
暫譯: Python中的因果推斷:在科技產業中應用因果推斷(平裝本)

Facure, Matheus

  • 出版商: O'Reilly
  • 出版日期: 2023-08-22
  • 定價: $2,800
  • 售價: 8.8$2,464 (限時優惠至 2025-03-31)
  • 語言: 英文
  • 頁數: 394
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1098140257
  • ISBN-13: 9781098140250
  • 相關分類: Python程式語言
  • 立即出貨 (庫存 < 4)

買這商品的人也買了...

商品描述

How many buyers will an additional dollar of online marketing bring in? Which customers will only buy when given a discount coupon? How do you establish an optimal pricing strategy? The best way to determine how the levers at our disposal affect the business metrics we want to drive is through causal inference.

In this book, author Matheus Facure, senior data scientist at Nubank, explains the largely untapped potential of causal inference for estimating impacts and effects. Managers, data scientists, and business analysts will learn classical causal inference methods like randomized control trials (A/B tests), linear regression, propensity score, synthetic controls, and difference-in-differences. Each method is accompanied by an application in the industry to serve as a grounding example.

With this book, you will:

  • Learn how to use basic concepts of causal inference
  • Frame a business problem as a causal inference problem
  • Understand how bias gets in the way of causal inference
  • Learn how causal effects can differ from person to person
  • Use repeated observations of the same customers across time to adjust for biases
  • Understand how causal effects differ across geographic locations
  • Examine noncompliance bias and effect dilution

商品描述(中文翻譯)

如何評估額外一美元的線上行銷能帶來多少買家?哪些顧客只有在獲得折扣券時才會購買?如何建立最佳的定價策略?確定我們手中可用的槓桿如何影響我們想要推動的商業指標的最佳方法是透過因果推斷。

在這本書中,作者 Matheus Facure,Nubank 的資深數據科學家,解釋了因果推斷在估算影響和效果方面的潛力尚未被充分利用。經理、數據科學家和商業分析師將學習經典的因果推斷方法,如隨機對照試驗(A/B 測試)、線性回歸、傾向分數、合成控制和差異中的差異。每種方法都附有行業中的應用作為實例。

透過這本書,您將能夠:

- 學習如何使用因果推斷的基本概念
- 將商業問題框架化為因果推斷問題
- 理解偏差如何妨礙因果推斷
- 學習因果效果如何因人而異
- 使用同一顧客在不同時間的重複觀察來調整偏差
- 理解因果效果在不同地理位置的差異
- 檢視不合規偏差和效果稀釋