Implementing Mlops in the Enterprise: A Production-First Approach
暫譯: 在企業中實施 MLOps:以生產為先的方式

Haviv, Yaron, Gift, Noah

  • 出版商: O'Reilly
  • 出版日期: 2024-01-09
  • 定價: $2,700
  • 售價: 8.8$2,376
  • 語言: 英文
  • 頁數: 377
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1098136586
  • ISBN-13: 9781098136581
  • 相關分類: Machine LearningData Science
  • 立即出貨

買這商品的人也買了...

相關主題

商品描述

With demand for scaling, real-time access, and other capabilities, businesses need to consider building operational machine learning pipelines. This practical guide helps your company bring data science to life for different real-world MLOps scenarios. Senior data scientists, MLOps engineers, and machine learning engineers will learn how to tackle challenges that prevent many businesses from moving ML models to production.

Authors Yaron Haviv and Noah Gift take a production-first approach. Rather than beginning with the ML model, you'll learn how to design a continuous operational pipeline, while making sure that various components and practices can map into it. By automating as many components as possible, and making the process fast and repeatable, your pipeline can scale to match your organization's needs.

You'll learn how to provide rapid business value while answering dynamic MLOps requirements. This book will help you:

  • Learn the MLOps process, including its technological and business value
  • Build and structure effective MLOps pipelines
  • Efficiently scale MLOps across your organization
  • Explore common MLOps use cases
  • Build MLOps pipelines for hybrid deployments, real-time predictions, and composite AI
  • Learn how to prepare for and adapt to the future of MLOps
  • Effectively use pre-trained models like HuggingFace and OpenAI to complement your MLOps strategy

商品描述(中文翻譯)

隨著對擴展性、即時存取及其他功能的需求增加,企業需要考慮建立運營機器學習管道。這本實用指南幫助您的公司在不同的現實世界 MLOps 情境中實現數據科學。資深數據科學家、MLOps 工程師和機器學習工程師將學習如何解決阻礙許多企業將機器學習模型投入生產的挑戰。

作者 Yaron Haviv 和 Noah Gift 採取以生產為先的方式。您將學習如何設計一個持續的運營管道,而不是從機器學習模型開始,同時確保各種組件和實踐能夠映射到這個管道中。通過自動化盡可能多的組件,並使過程快速且可重複,您的管道可以擴展以滿足組織的需求。

您將學習如何在滿足動態 MLOps 要求的同時提供快速的商業價值。這本書將幫助您:

- 學習 MLOps 流程,包括其技術和商業價值
- 建立和結構有效的 MLOps 管道
- 在您的組織中高效擴展 MLOps
- 探索常見的 MLOps 使用案例
- 為混合部署、即時預測和複合 AI 建立 MLOps 管道
- 學習如何為 MLOps 的未來做好準備並適應
- 有效使用像 HuggingFace 和 OpenAI 的預訓練模型來補充您的 MLOps 策略