Software Engineering for Data Scientists: From Notebooks to Scalable Systems (Paperback)
暫譯: 數據科學家的軟體工程:從筆記本到可擴展系統 (平裝本)

Nelson, Catherine

  • 出版商: O'Reilly
  • 出版日期: 2024-05-21
  • 定價: $2,700
  • 售價: 8.8$2,376
  • 語言: 英文
  • 頁數: 257
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1098136209
  • ISBN-13: 9781098136208
  • 相關分類: JVM 語言軟體工程
  • 立即出貨

買這商品的人也買了...

相關主題

商品描述

Data science happens in code. The ability to write reproducible, robust, scaleable code is key to a data science project's success--and is absolutely essential for those working with production code. This practical book bridges the gap between data science and software engineering, clearly explaining how to apply the best practices from software engineering to data science.

Examples are provided in Python, drawn from popular packages such as NumPy and pandas. If you want to write better data science code, this guide covers the essential topics you need (and that are often missing from introductory data science or coding classes), including how to:

  • Understand data structures and object-oriented programming
  • Clearly and skillfully document your code
  • Package and share your code
  • Integrate data science code with a larger codebase
  • Write APIs
  • Create secure code
  • Apply best practices to common tasks such as testing, error handling, and logging
  • Work more effectively with software engineers
  • Write more efficient, maintainable, and robust code in Python
  • Put your data science projects into production
  • And more

商品描述(中文翻譯)

資料科學發生在程式碼中。撰寫可重現、穩健且可擴展的程式碼能力是資料科學專案成功的關鍵,對於處理生產程式碼的人來說更是絕對必要。本書實用地橋接了資料科學與軟體工程之間的鴻溝,清楚地解釋如何將軟體工程的最佳實踐應用於資料科學。

本書提供的範例使用 Python,並引用了如 NumPy 和 pandas 等流行套件。如果您想撰寫更好的資料科學程式碼,本指南涵蓋了您所需的基本主題(這些主題通常在入門資料科學或程式設計課程中缺失),包括如何:

- 理解資料結構和物件導向程式設計
- 清晰且熟練地記錄您的程式碼
- 封裝並分享您的程式碼
- 將資料科學程式碼整合到更大的程式碼庫中
- 撰寫 API
- 創建安全的程式碼
- 將最佳實踐應用於測試、錯誤處理和日誌記錄等常見任務
- 更有效地與軟體工程師合作
- 在 Python 中撰寫更高效、可維護且穩健的程式碼
- 將您的資料科學專案投入生產
- 以及更多內容