Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play, 2/e (Paperback)
暫譯: 生成式深度學習:教導機器繪畫、寫作、作曲與演奏,第二版(平裝本)

Foster, David

買這商品的人也買了...

相關主題

商品描述

Generative AI is the hottest topic in tech. This practical book teaches machine learning engineers and data scientists how to use TensorFlow and Keras to create impressive generative deep learning models from scratch, including variational autoencoders (VAEs), generative adversarial networks (GANs), Transformers, normalizing flows, energy-based models, and denoising diffusion models.

The book starts with the basics of deep learning and progresses to cutting-edge architectures. Through tips and tricks, you'll understand how to make your models learn more efficiently and become more creative.

  • Discover how VAEs can change facial expressions in photos
  • Train GANs to generate images based on your own dataset
  • Build diffusion models to produce new varieties of flowers
  • Train your own GPT for text generation
  • Learn how large language models like ChatGPT are trained
  • Explore state-of-the-art architectures such as StyleGAN2 and ViT-VQGAN
  • Compose polyphonic music using Transformers and MuseGAN
  • Understand how generative world models can solve reinforcement learning tasks
  • Dive into multimodal models such as DALL.E 2, Imagen, and Stable Diffusion for text-to-image generation

This book also explores the future of generative AI and how individuals and companies can proactively begin to leverage this remarkable new technology to create competitive advantage.

商品描述(中文翻譯)

生成式人工智慧是科技界最熱門的話題。本書實用地教導機器學習工程師和資料科學家如何使用 TensorFlow 和 Keras 從零開始創建令人印象深刻的生成式深度學習模型,包括變分自編碼器(Variational Autoencoders, VAEs)、生成對抗網路(Generative Adversarial Networks, GANs)、變壓器(Transformers)、正規化流(Normalizing Flows)、基於能量的模型(Energy-Based Models)以及去噪擴散模型(Denoising Diffusion Models)。

本書從深度學習的基本概念開始,逐步進入尖端架構。透過技巧和竅門,您將了解如何讓模型更有效地學習並變得更具創造力。

- 探索 VAEs 如何改變照片中的面部表情
- 訓練 GANs 根據您自己的數據集生成圖像
- 建立擴散模型以產生新種類的花卉
- 訓練自己的 GPT 進行文本生成
- 了解像 ChatGPT 這樣的大型語言模型是如何訓練的
- 探索最先進的架構,如 StyleGAN2 和 ViT-VQGAN
- 使用 Transformers 和 MuseGAN 創作多聲部音樂
- 理解生成式世界模型如何解決強化學習任務
- 深入了解多模態模型,如 DALL.E 2、Imagen 和 Stable Diffusion 進行文本到圖像的生成

本書還探討了生成式人工智慧的未來,以及個人和公司如何主動開始利用這項卓越的新技術來創造競爭優勢。