An Introduction to Statistical Inference and Its Applications with R
暫譯: 統計推論及其在 R 中的應用導論

Trosset, Michael W.

相關主題

商品描述

Emphasizing concepts rather than recipes, An Introduction to Statistical Inference and Its Applications with R provides a clear exposition of the methods of statistical inference for students who are comfortable with mathematical notation. Numerous examples, case studies, and exercises are included. R is used to simplify computation, create figures, and draw pseudorandom samples--not to perform entire analyses.

After discussing the importance of chance in experimentation, the text develops basic tools of probability. The plug-in principle then provides a transition from populations to samples, motivating a variety of summary statistics and diagnostic techniques. The heart of the text is a careful exposition of point estimation, hypothesis testing, and confidence intervals. The author then explains procedures for 1- and 2-sample location problems, analysis of variance, goodness-of-fit, and correlation and regression. He concludes by discussing the role of simulation in modern statistical inference.

Focusing on the assumptions that underlie popular statistical methods, this textbook explains how and why these methods are used to analyze experimental data.

商品描述(中文翻譯)

強調概念而非食譜,統計推論及其應用簡介(An Introduction to Statistical Inference and Its Applications with R) 為熟悉數學符號的學生提供了清晰的統計推論方法的闡述。書中包含了大量的範例、案例研究和練習題。使用 R 來簡化計算、創建圖形和抽取偽隨機樣本,而不是進行整體分析。

在討論實驗中機會的重要性後,文本發展了基本的概率工具。接著,插入原則提供了從母體到樣本的過渡,激發了各種摘要統計量和診斷技術。文本的核心是對點估計、假設檢驗和信賴區間的仔細闡述。作者隨後解釋了 1-樣本和 2-樣本位置問題的程序、變異數分析、適合度檢驗以及相關性和回歸分析。他最後討論了模擬在現代統計推論中的角色。

本教科書專注於流行統計方法背後的假設,解釋了這些方法如何以及為何用於分析實驗數據。

作者簡介

Michael W. Trosset is Professor of Statistics and Director of the Indiana Statistical Consulting Center at Indiana University.

作者簡介(中文翻譯)

邁克爾·W·特羅塞特是印第安納大學統計學教授及印第安納統計諮詢中心主任。