Machine Learning Toolbox for Social Scientists: Applied Predictive Analytics with R
暫譯: 社會科學家的機器學習工具箱:使用 R 的應用預測分析

Aydede, Yigit

  • 出版商: CRC
  • 出版日期: 2023-09-22
  • 售價: $3,680
  • 貴賓價: 9.5$3,496
  • 語言: 英文
  • 頁數: 586
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1032463953
  • ISBN-13: 9781032463957
  • 相關分類: Machine Learning
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

Machine Learning Toolbox for Social Scientists covers predictive methods with complementary statistical "tools" that make it mostly self-contained. The inferential statistics is the traditional framework for most data analytics courses in social science and business fields, especially in Economics and Finance. The new organization that this book offers goes beyond standard machine learning code applications, providing intuitive backgrounds for new predictive methods that social science and business students can follow. The book also adds many other modern statistical tools complementary to predictive methods that cannot be easily found in "econometrics" textbooks: nonparametric methods, data exploration with predictive models, penalized regressions, model selection with sparsity, dimension reduction methods, nonparametric time-series predictions, graphical network analysis, algorithmic optimization methods, classification with imbalanced data, and many others. This book is targeted at students and researchers who have no advanced statistical background, but instead coming from the tradition of "inferential statistics". The modern statistical methods the book provides allows it to be effectively used in teaching in the social science and business fields.

Key Features:

 

 

 

 

 

 

  • The book is structured for those who have been trained in a traditional statistics curriculum.
  • There is one long initial section that covers the differences in "estimation" and "prediction" for people trained for causal analysis.
  • The book develops a background framework for Machine learning applications from Nonparametric methods.
  • SVM and NN simple enough without too much detail. It's self-sufficient.
  • Nonparametric time-series predictions are new and covered in a separate section.
  • Additional sections are added: Penalized Regressions, Dimension Reduction Methods, and Graphical Methods have been increasing in their popularity in social sciences.

商品描述(中文翻譯)

《社會科學家的機器學習工具箱》涵蓋了預測方法及其互補的統計「工具」,使其幾乎自成一體。推論統計是社會科學和商業領域中大多數數據分析課程的傳統框架,特別是在經濟學和金融學中。本書提供的新組織超越了標準的機器學習代碼應用,為社會科學和商業學生提供了直觀的背景,以便他們能夠理解新的預測方法。本書還增加了許多其他現代統計工具,這些工具與預測方法互補,並且在「計量經濟學」教科書中不易找到:非參數方法、使用預測模型的數據探索、懲罰性回歸、稀疏模型選擇、降維方法、非參數時間序列預測、圖形網絡分析、算法優化方法、處理不平衡數據的分類等。本書的目標讀者是沒有高級統計背景的學生和研究人員,而是來自「推論統計」的傳統。書中提供的現代統計方法使其能夠在社會科學和商業領域的教學中有效使用。

主要特點:

- 本書的結構適合接受傳統統計課程訓練的人。
- 有一個長的初始部分,涵蓋了對於接受因果分析訓練的人在「估計」和「預測」之間的差異。
- 本書從非參數方法發展出機器學習應用的背景框架。
- 支持向量機(SVM)和神經網絡(NN)簡單明瞭,無需過多細節,具備自給自足的特性。
- 非參數時間序列預測是新的,並在單獨的部分中進行了介紹。
- 增加了額外的部分:懲罰性回歸、降維方法和圖形方法在社會科學中的受歡迎程度日益上升。

作者簡介

Yigit Aydede is a Sobey Professor of Economics at Saint Mary's University, Halifax, Nova Scotia, Canada. He is a founder member of the Research Portal on Machine Learning for Social and Health Policy, a joint initiative by a group of researchers from Saint Mary's and Dalhousie universities

作者簡介(中文翻譯)

Yigit Aydede 是加拿大新斯科舍省哈利法克斯聖瑪麗大學的索貝經濟學教授。他是社會與健康政策機器學習研究門戶的創始成員,這是一個由聖瑪麗大學和達爾豪斯大學的研究人員組成的聯合倡議。