Machine Learning on Commodity Tiny Devices: Theory and Practice (商品微型設備上的機器學習:理論與實踐)

Guo, Song, Zhou, Qihua

  • 出版商: CRC
  • 出版日期: 2024-12-19
  • 售價: $2,310
  • 貴賓價: 9.5$2,195
  • 語言: 英文
  • 頁數: 250
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1032374268
  • ISBN-13: 9781032374260
  • 相關分類: Machine Learning
  • 尚未上市,無法訂購

相關主題

商品描述

This book aims at the tiny machine learning (TinyML) software and hardware synergy for edge intelligence applications. This book presents on-device learning techniques covering model-level neural network design, algorithm-level training optimization and hardware-level instruction acceleration.

Analyzing the limitations of conventional in-cloud computing would reveal that on-device learning is a promising research direction to meet the requirements of edge intelligence applications. As to the cutting-edge research of TinyML, implementing a high-efficiency learning framework and enabling system-level acceleration is one of the most fundamental issues. This book presents a comprehensive discussion of the latest research progress and provides system-level insights on designing TinyML frameworks, including neural network design, training algorithm optimization and domain-specific hardware acceleration. It identifies the main challenges when deploying TinyML tasks in the real world and guides the researchers to deploy a reliable learning system.

This book will be of interest to students and scholars in the field of edge intelligence, especially to those with sufficient professional Edge AI skills. It will also be an excellent guide for researchers to implement high-performance TinyML systems.

商品描述(中文翻譯)

本書旨在探討微型機器學習(TinyML)軟體與硬體在邊緣智能應用中的協同作用。本書介紹了設備端學習技術,涵蓋模型層級的神經網絡設計、算法層級的訓練優化以及硬體層級的指令加速。

分析傳統雲端計算的限制會顯示,設備端學習是一個有前景的研究方向,以滿足邊緣智能應用的需求。至於TinyML的前沿研究,實現高效的學習框架並啟用系統層級的加速是最基本的問題之一。本書對最新的研究進展進行了全面的討論,並提供了設計TinyML框架的系統層級見解,包括神經網絡設計、訓練算法優化和特定領域的硬體加速。它識別了在現實世界中部署TinyML任務時的主要挑戰,並指導研究人員部署可靠的學習系統。

本書將吸引邊緣智能領域的學生和學者,特別是那些具備足夠專業Edge AI技能的人士。它也將成為研究人員實現高性能TinyML系統的優秀指南。

作者簡介

Song Guo is a Full Professor leading the Edge Intelligence Lab and Research Group of Networking and Mobile Computing at the Hong Kong Polytechnic University. Professor Guo is a Fellow of the Canadian Academy of Engineering, Fellow of the IEEE, Fellow of the AAIA and Clarivate Highly Cited Researcher.

Qihua Zhou is a PhD student with the Department of Computing at the Hong Kong Polytechnic University. His research interests include distributed AI systems, large-scale parallel processing, TinyML systems and domain-specific accelerators.

作者簡介(中文翻譯)

宋國是香港理工大學邊緣智能實驗室及網絡與移動計算研究小組的全職教授。國教授是加拿大工程院院士、IEEE 會士、AAIA 會士及 Clarivate 高被引研究者。

周啟華是香港理工大學計算系的博士生。他的研究興趣包括分散式人工智慧系統、大規模並行處理、TinyML 系統及特定領域加速器。