Topological Dynamics in Metamodel Discovery with Artificial Intelligence: From Biomedical to Cosmological Technologies

Fernández, Ariel

  • 出版商: CRC
  • 出版日期: 2022-12-21
  • 售價: $4,080
  • 貴賓價: 9.5$3,876
  • 語言: 英文
  • 頁數: 210
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 103236632X
  • ISBN-13: 9781032366326
  • 相關分類: 人工智慧
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The leveraging of artificial intelligence (AI) for model discovery in dynamical systems is cross-fertilizing and revolutionizing both disciplines, heralding a new era of data-driven science. This book is placed at the forefront of this endeavor, taking model discovery to the next level.

Dealing with artificial intelligence, this book delineates AI's role in model discovery for dynamical systems. With the implementation of topological methods to construct metamodels, it engages with levels of complexity and multiscale hierarchies hitherto considered off limits for data science.

Key Features:

  • Introduces new and advanced methods of model discovery for time series data using artificial intelligence
  • Implements topological approaches to distill machine-intuitive models from complex dynamics data
  • Introduces a new paradigm for a parsimonious model of a dynamical system without resorting to differential equations
  • Heralds a new era in data-driven science and engineering based on the operational concept of computational intuition

Intended for graduate students, researchers, and practitioners interested in dynamical systems empowered by AI or machine learning and in their biological, engineering, and biomedical applications, this book will represent a significant educational resource for people engaged in AI-related cross-disciplinary projects.

商品描述(中文翻譯)

人工智慧(AI)在動態系統的模型發現中的應用,相互交叉並革命了這兩個領域,開啟了數據驅動科學的新時代。本書位於這一努力的前沿,將模型發現推向了新的水平。

本書探討了人工智慧在動態系統模型發現中的角色。通過實施拓撲方法來構建元模型,它涉及到以往被認為在數據科學中無法觸及的複雜性和多尺度層次。

主要特點:
- 引入了使用人工智慧進行時間序列數據模型發現的新方法和高級方法
- 實施拓撲方法,從複雜的動態數據中提煉出機器直觀的模型
- 引入了一種新的節約模型的範式,而不需要求解微分方程
- 基於計算直覺的操作概念,開啟了基於數據驅動的科學和工程的新時代

本書面向對由AI或機器學習賦能的動態系統以及其在生物學、工程學和生物醫學應用中感興趣的研究生、研究人員和從業人員,對於從事AI相關跨學科項目的人們來說,本書將是一個重要的教育資源。

作者簡介

Ariel Fernández is an Argentine-American physical chemist and mathematician. He obtained a Ph. D. degree in Chemical Physics from Yale University and held the Hasselmann Endowed Chair Professorship in Bioengineering at Rice University until his retirement. To date, he has published over 400 scientific papers in professional journals including PNAS, Nature, Nature Biotechnology, Physical Review Letters, Genome Research and Genome Biology. Fernández has also authored five books on biophysics and molecular medicine and holds several patents on technological innovation. Since 2018 Fernández heads the Daruma Institute for Applied Intelligence, the research arm of AF Innovation, a Consultancy based in Argentina and the USA.

作者簡介(中文翻譯)

Ariel Fernández是一位阿根廷裔美國物理化學家和數學家。他在耶魯大學獲得化學物理學博士學位,並在萊斯大學擔任哈塞爾曼生物工程講座教授直到退休。迄今為止,他在專業期刊上發表了400多篇科學論文,包括PNAS、Nature、Nature Biotechnology、Physical Review Letters、Genome Research和Genome Biology。Fernández還撰寫了五本關於生物物理學和分子醫學的書籍,並擁有幾項技術創新的專利。自2018年起,Fernández擔任達魯瑪應用智能研究所的負責人,該研究所是位於阿根廷和美國的AF Innovation咨詢公司的研究部門。