DevOps for Data Science
Gold, Alex
- 出版商: CRC
- 出版日期: 2024-06-19
- 售價: $2,930
- 貴賓價: 9.5 折 $2,784
- 語言: 英文
- 頁數: 256
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1032100346
- ISBN-13: 9781032100340
-
相關分類:
DevOps、Data Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
Data Scientists are experts at analyzing, modelling and visualizing data but, at one point or another, have all encountered difficulties in collaborating with or delivering their work to the people and systems that matter. Born out of the agile software movement, DevOps is a set of practices, principles and tools that help software engineers reliably deploy work to production. This book takes the lessons of DevOps and aplies them to creating and delivering production-grade data science projects in Python and R.
This book's first section explores how to build data science projects that deploy to production with no frills or fuss. Its second section covers the rudiments of administering a server, including Linux, application, and network administration before concluding with a demystification of the concerns of enterprise IT/Administration in its final section, making it possible for data scientists to communicate and collaborate with their organization's security, networking, and administration teams.
Key Features:
- Start-to-finish labs take readers through creating projects that meet DevOps best practices and creating a server-based environment to work on and deploy them.
- Provides an appendix of cheatsheets so that readers will never be without the reference they need to remember a Git, Docker, or Command Line command.
- Distills what a data scientist needs to know about Docker, APIs, CI/CD, Linux, DNS, SSL, HTTP, Auth, and more.
- Written specifically to address the concern of a data scientist who wants to take their Python or R work to production.
There are countless books on creating data science work that is correct. This book, on the otherhand, aims to go beyond this, targeted at data scientists who want their work to be than merely accurate and deliver work that matters.
商品描述(中文翻譯)
資料科學家是分析、建模和視覺化數據的專家,但在與重要人員和系統合作或交付工作時,他們都會遇到困難。DevOps是從敏捷軟件運動中誕生的一套實踐、原則和工具,可以幫助軟件工程師可靠地將工作部署到生產環境中。本書將DevOps的經驗應用於使用Python和R創建和交付生產級數據科學項目。
本書的第一部分探討如何建立不繁瑣的數據科學項目,並將其部署到生產環境中。第二部分涵蓋了服務器管理的基礎知識,包括Linux、應用程序和網絡管理,最後一部分則對企業IT/管理的問題進行了解析,使得資料科學家能夠與組織的安全、網絡和管理團隊進行溝通和協作。
主要特點:
- 從頭到尾的實驗室引導讀者創建符合DevOps最佳實踐的項目,並創建一個基於服務器的環境來進行工作和部署。
- 提供了一個速查表附錄,讓讀者永遠不會缺少Git、Docker或命令行命令的參考。
- 精煉了資料科學家需要了解的Docker、API、CI/CD、Linux、DNS、SSL、HTTP、Auth等知識。
- 專門為希望將其Python或R工作投入生產的資料科學家而寫。
- 有無數本關於創建正確的數據科學工作的書籍。相反,本書旨在超越這一點,針對希望他們的工作不僅僅是準確的資料科學家,並交付有價值的工作。
作者簡介
Alex leads the Solutions Engineering team at Posit (formerly RStudio). In that role, he has advised hundreds of organizations of all sizes and levels of sophistication to create production-grade open-source data science environments. Before coming to Posit, he was a data scientist and data science team lead and worked on politics, consulting, and healthcare.
作者簡介(中文翻譯)
Alex在Posit(前身為RStudio)領導解決方案工程團隊。在這個角色中,他曾經為各種規模和程度的組織提供建議,以建立生產級的開源數據科學環境。在加入Posit之前,他是一名數據科學家和數據科學團隊負責人,並在政治、咨詢和醫療領域工作過。