Physics of Data Science and Machine Learning
暫譯: 數據科學與機器學習的物理學

Rauf, Ijaz A.

買這商品的人也買了...

相關主題

商品描述

Physics of Data Science and Machine Learning links fundamental concepts of physics to data science, machine learning and artificial intelligence for physicists looking to integrate these techniques into their work.

This book is written explicitly for physicists, marrying quantum and statistical mechanics with modern data mining, data science, and machine learning. It also explains how to integrate these techniques into the design of experiments, whilst exploring neural networks and machine learning building on fundamental concepts of statistical and quantum mechanics.

This book is a self-learning tool for physicists looking to learn how to utilize data science and machine learning in their research. It will also be of interest to computer scientists and applied mathematicians, alongside graduate students looking to understand the basic concepts and foundations of data science, machine learning, and artificial intelligence.

Although specifically written for physicists, it will also help provide non-physicists with an opportunity to understand the fundamental concepts from a physics perspective to aid the development of new and innovative machine learning and artificial intelligence tools.

Key features:

 

 

 

  • Introduces the design of experiments and digital twin concepts in simple lay terms for physicists to understand, adopt, and adapt.
  • Free from endless derivations, instead equations are presented and explained strategically and explain why it is imperative to use them and how they will help in the task at hand.
  • Illustrations and simple explanations help readers visualize and absorb the difficult to understand concepts.

Ijaz A. Rauf is Adjunct Professor at the School of Graduate Studies, York University, Toronto, Canada. He is also an Associate Researcher at Ryerson University, Toronto, Canada and President of the Eminent-Tech Corporation, Bradford, ON, Canada.

商品描述(中文翻譯)

《數據科學與機器學習的物理學》將物理學的基本概念與數據科學、機器學習和人工智慧聯繫起來,旨在幫助物理學家將這些技術整合到他們的工作中。

本書專門為物理學家撰寫,將量子力學和統計力學與現代數據挖掘、數據科學和機器學習結合在一起。它還解釋了如何將這些技術整合到實驗設計中,同時探討神經網絡和機器學習,基於統計和量子力學的基本概念。

本書是物理學家自學如何在研究中利用數據科學和機器學習的工具。對於計算機科學家和應用數學家,以及希望了解數據科學、機器學習和人工智慧基本概念和基礎的研究生來說,這本書也將引起他們的興趣。

雖然本書專門為物理學家撰寫,但它也為非物理學家提供了從物理學角度理解基本概念的機會,以促進新型創新機器學習和人工智慧工具的發展。

主要特點:

- 以簡單的術語介紹實驗設計和數位雙胞胎概念,讓物理學家能夠理解、採用和調整。
- 避免無止境的推導,而是戰略性地呈現和解釋方程式,並說明為什麼使用它們是必要的,以及它們如何幫助當前的任務。
- 插圖和簡單的解釋幫助讀者可視化並吸收難以理解的概念。

Ijaz A. Rauf是加拿大多倫多約克大學研究生院的兼任教授。他同時也是加拿大多倫多萊爾森大學的副研究員,以及加拿大安大略省布拉德福德的Eminent-Tech Corporation總裁。

作者簡介

Ijaz A. Rauf is Adjunct Professor at the School of Graduate Studies, York University, Toronto, Canada. He is also an Associate Researcher at Ryerson University, Toronto, Canada and President of the Eminent-Tech Corporation, Bradford, ON, Canada.

作者簡介(中文翻譯)

Ijaz A. Rauf 是加拿大多倫多約克大學研究生院的兼任教授。他同時也是加拿大多倫多萊爾森大學的副研究員,以及加拿大安大略省布拉德福德的Eminent-Tech Corporation的總裁。