Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization
暫譯: 無監督學習方法於降維與資料視覺化
Tripathy, B. K., Sundareswaran, Anveshrithaa, Ghela, Shrusti
- 出版商: CRC
- 出版日期: 2021-09-02
- 售價: $6,660
- 貴賓價: 9.5 折 $6,327
- 語言: 英文
- 頁數: 160
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1032041013
- ISBN-13: 9781032041018
-
相關分類:
Data-visualization
海外代購書籍(需單獨結帳)
相關主題
商品描述
Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization describes such algorithms as Locally Linear Embedding (LLE), Laplacian Eigenmaps, Isomap, Semidefinite Embedding, and t-SNE to resolve the problem of dimensionality reduction in the case of non-linear relationships within the data. Underlying mathematical concepts, derivations, and proofs with logical explanations for these algorithms are discussed, including strengths and limitations. The book highlights important use cases of these algorithms and provides examples along with visualizations. Comparative study of the algorithms is presented to give a clear idea on selecting the best suitable algorithm for a given dataset for efficient dimensionality reduction and data visualization.
FEATURES
- Demonstrates how unsupervised learning approaches can be used for dimensionality reduction
- Neatly explains algorithms with a focus on the fundamentals and underlying mathematical concepts
- Describes the comparative study of the algorithms and discusses when and where each algorithm is best suitable for use
- Provides use cases, illustrative examples, and visualizations of each algorithm
- Helps visualize and create compact representations of high dimensional and intricate data for various real-world applications and data analysis
This book is aimed at professionals, graduate students, and researchers in Computer Science and Engineering, Data Science, Machine Learning, Computer Vision, Data Mining, Deep Learning, Sensor Data Filtering, Feature Extraction for Control Systems, and Medical Instruments Input Extraction.
商品描述(中文翻譯)
《無監督學習方法於降維與數據可視化》描述了如局部線性嵌入(Locally Linear Embedding, LLE)、拉普拉斯特徵映射(Laplacian Eigenmaps)、等距映射(Isomap)、半正定嵌入(Semidefinite Embedding)和t-SNE等算法,以解決數據中非線性關係的降維問題。書中討論了這些算法的基本數學概念、推導和證明,並提供邏輯解釋,包括其優勢和限制。該書突出了這些算法的重要應用案例,並提供了示例及可視化。還進行了算法的比較研究,以清楚地了解如何為特定數據集選擇最合適的算法,以實現高效的降維和數據可視化。
特色
- 演示無監督學習方法如何用於降維
- 清晰解釋算法,重點在於基本原理和基本數學概念
- 描述算法的比較研究,並討論每個算法最適合使用的情境和場合
- 提供每個算法的使用案例、示例和可視化
- 幫助可視化並創建高維和複雜數據的緊湊表示,以應用於各種現實世界的應用和數據分析
本書旨在針對計算機科學與工程、數據科學、機器學習、計算機視覺、數據挖掘、深度學習、傳感器數據過濾、控制系統的特徵提取以及醫療儀器輸入提取的專業人士、研究生和研究人員。
作者簡介
Dr. B. K. Tripathy, a distinguished researcher in Mathematics and Computer Science has more than 600 publications to his credit in international journals, conference proceedings, chapters in edited research volumes, edited volumes, monographs and books. He has supervised over 50 research degrees to his credit. He has a distinguished professional career of over 40 years of service in different positions and at present he is working as a professor (Higher Academic Grade) and Dean of school of Information technology in VIT, Vellore. As a student, Dr. Tripathy has won three gold medals, national scholarship for post graduate studies, UGC fellowship to pursue PhD, DST sponsorship to pursue M. Tech in computer science at Pune University and DOE visiting fellowship to IIT, Kharagpur. He was nominated as distinguished alumni of Berhampur University on its silver jubilee and golden jubilee years. For efficient service as a reviewer for Mathematical Reviews, he was selected as an honorary member of American Mathematical Society. Besides this he is a life member/senior member/member of over 20 international professional societies including IEEE, ACM, IRSS, CSI, Indian Science congress, IMS, IET, ACM Compute News group and IEANG. Dr. Tripathy is an editor/editorial board member/ reviewer of over 100 international journals like Information Sciences, IEEE transactions on Fuzzy Systems, Knowledge Based Systems, Applied Soft Computing, IEEE Access, Analysis of Neural Networks, Int. Jour. of Information Technology and Decision Making, Proceedings of the Royal Society-A and Kybernetes. He has so far adjudicated PhD theses of more than 20 universities all over India. He has organised many international conferences, workshops, FDPs, guest lectures, industrial visits, webinars over the years. Dr. Tripathy has to his credits delivered keynote speeches in international conferences, organised special sessions and chaired sessions. Also, many of his papers have been selected as best papers at international conferences. He has received funded projects from UGC, DST and DRDO and published some patents also.
His current topics of research interest include Soft Computing, Granular computing, Fuzzy Sets and Systems, Rough Sets and knowledge engineering, Data Clustering, Social Network Analysis, Neighbourhood Systems, Soft Sets, Social Internet of Things, Big Data Analytics, Multiset theory, Decision Support Systems, Deep Neural Networks, Pattern Recognition and Dimensionality Reduction.
Anveshrithaa S
Anveshrithaa Sundareswaran is a final year B. Tech (Computer Science) student at Vellore Institute of Technology, Vellore. Her areas of interest include machine learning, deep learning and data science. She has shown her research capabilities with several publications. Her research on Promoter Prediction in DNA Sequences of Escherichia coli using Machine Learning Algorithms won the best Student Paper award at the IEEE Madras section Student Paper Contest, 2019 and was published later in the International Journal of Scientific & Technology Research. She has presented a paper on Real-Time Vehicle Traffic Analysis using Long Short-Term Memory Networks in Apache Spark at the IEEE International Conference on Emerging Trends in Information Technology and Engineering, 2020. Her research on Real-Time Traffic Prediction using Ensemble Learning for Deep Neural Networks has been published in the International Journal of Intelligent Information Technologies (IJIIT). Also, she has communicated a research paper on Real-Time Weather Analytics using Long Short-Term Memory Networks to the International Journal of Cognitive Computing in Engineering. Her other achievements include the outstanding student award at the 2020 Tsinghua University Deep Learning Summer School where she was the only student to represent India. Achievers Award and Raman Research Award from VIT University are some of the other recognitions of her merit.
Shrusti Ghela
Shruthi Ghela has received her B. Tech (CS) degree from Vellore Institute of Technology, Vellore in May 2020. She completed her Capstone project at Iconflux Technologies Pvt. Ltd., Ahmedabad, India in the field of Machine Learning during. She has completed two summer projects: one in the domain of Data Science from KeenExpert Solution Pvt. Ltd., Ahmedabad, India and the other in Web Development from Jahannum.com, Ahmedabad, India. For her excellent academic performance, she received scholarship for all 4 years of under graduation from VIT. She was the winner of the DevJams'19 hackathon for two consecutive years in 2018 and 2019. She has proficiency in the languages German and Chinese besides English. In an attempt to increase and intensify her specialisations, she has completed IBM Data Science Professional Certificate (Coursera), Machine Learning A-Z (Udemy) and Machine Learning by Andrew Ng (Coursera). Ms. Ghela has the skill set of Hadoop, Python, MATLAB, R, Haskell, Object Oriented Programming, Full Stack development, Functional Programming and Statistics. Her research area of interest includes Data Science and Quantum Computing. Apart from being a hard-core subject learner, she enjoys Photography, playing Tennis, reading and traveling.
作者簡介(中文翻譯)
Dr. B. K. Tripathy,一位在數學和計算機科學領域享有盛譽的研究者,擁有超過600篇的國際期刊、會議論文、編輯研究專著中的章節、編輯專著、專論和書籍的出版物。他指導了超過50個研究學位,並在不同職位上擁有超過40年的卓越專業生涯,目前擔任VIT(維洛爾科技學院)資訊科技學院的教授(高級學術等級)和院長。作為學生,Dr. Tripathy曾獲得三枚金牌、研究生學習的國家獎學金、UGC獎學金以攻讀博士學位、DST贊助以在浦那大學攻讀計算機科學的碩士學位,以及DOE訪問獎學金前往IIT(印度理工學院)卡拉格普爾。他在Berhampur大學的銀禧和金禧年被提名為傑出校友。因為在《數學評論》擔任審稿人的高效服務,他被選為美國數學學會的榮譽會員。此外,他還是超過20個國際專業學會的終身會員/高級會員/會員,包括IEEE、ACM、IRSS、CSI、印度科學大會、IMS、IET、ACM Compute News小組和IEANG。Dr. Tripathy是超過100本國際期刊的編輯/編輯委員會成員/審稿人,如《資訊科學》、《IEEE模糊系統期刊》、《知識基礎系統》、《應用軟計算》、《IEEE Access》、《神經網絡分析》、《國際資訊技術與決策制定期刊》、《皇家學會A期刊》和《Kybernetes》。到目前為止,他已經評審了來自全印度超過20所大學的博士論文。他多年來組織了許多國際會議、研討會、FDP、特邀講座、工業考察和網絡研討會。Dr. Tripathy在國際會議上發表了主題演講,組織了專題會議並主持會議。此外,他的許多論文在國際會議上被選為最佳論文。他獲得了來自UGC、DST和DRDO的資助項目,並發表了一些專利。
他目前的研究興趣包括軟計算、顆粒計算、模糊集與系統、粗集與知識工程、數據聚類、社交網絡分析、鄰域系統、軟集、社交物聯網、大數據分析、多重集理論、決策支持系統、深度神經網絡、模式識別和降維。
Anveshrithaa S
Anveshrithaa Sundareswaran是Vellore Institute of Technology(維洛爾科技學院)計算機科學專業的最後一年B. Tech學生。她的興趣領域包括機器學習、深度學習和數據科學。她通過多篇出版物展示了她的研究能力。她的研究題目為「使用機器學習算法對大腸桿菌DNA序列中的啟動子進行預測」,在2019年IEEE馬德拉斯分會學生論文比賽中獲得最佳學生論文獎,並隨後發表在《國際科學與技術研究期刊》。她在2020年IEEE國際會議上發表了一篇關於使用長短期記憶網絡在Apache Spark中進行實時車輛交通分析的論文。她的研究「使用集成學習進行深度神經網絡的實時交通預測」已發表在《國際智能信息技術期刊》(IJIIT)。此外,她還向《國際工程認知計算期刊》提交了一篇關於使用長短期記憶網絡進行實時天氣分析的研究論文。她的其他成就包括在2020年清華大學深度學習暑期學校獲得優秀學生獎,並且她是唯一代表印度的學生。她還獲得了VIT大學的成就獎和拉曼研究獎。
Shrusti Ghela
Shruthi Ghela於2020年5月從Vellore Institute of Technology(維洛爾科技學院)獲得計算機科學的B. Tech學位。她在Iconflux Technologies Pvt. Ltd.(印度艾哈邁達巴德)完成了機器學習領域的Capstone專案。她完成了兩個暑期專案:一個是在KeenExpert Solution Pvt. Ltd.(印度艾哈邁達巴德)的數據科學領域,另一個是在Jahannum.com(印度艾哈邁達巴德)的網頁開發領域。因為她優異的學業表現,她在VIT的四年本科期間獲得了獎學金。她在2018年和2019年連續兩年贏得DevJams'19黑客馬拉松的冠軍。除了英語外,她還精通德語和中文。為了增強和深化她的專業技能,她完成了IBM數據科學專業證書(Coursera)、Machine Learning A-Z(Udemy)和Andrew Ng的機器學習課程(Coursera)。Ms. Ghela擁有Hadoop、Python、MATLAB、R、Haskell、面向對象編程、全棧開發、函數式編程和統計的技能。她的研究興趣包括數據科學和量子計算。除了作為一名專業的學科學習者外,她還喜歡攝影、打網球、閱讀和旅行。