The Early Mathematics of Leonhard Euler
暫譯: 萊昂哈德·歐拉的早期數學

C. Edward Sandifer

  • 出版商: The Mathematical Ass
  • 出版日期: 2007-03-15
  • 售價: $1,150
  • 貴賓價: 9.8$1,127
  • 語言: 英文
  • 頁數: 380
  • ISBN: 0883855593
  • ISBN-13: 9780883855591
  • 下單後立即進貨 (約5~7天)

買這商品的人也買了...

商品描述

Description

The Early Mathematics of Leonhard Euler gives an article-by-article description of Leonhard Euler s early mathematical works, the 50 or so mathematical articles he wrote before he left St. Petersburg in 1741 to join the Academy of Frederick the Great in Berlin. These early pieces contain some of Euler s greatest work, the Königsberg bridge problem, his solution to the Basel problem, and his first proof of the Euler-Fermat theorem. It also presents important results that we seldom realize are due to Euler; that mixed partial derivatives are (usually) equal, our f(x) notation, and the integrating factor in differential equations. The books shows how contributions in diverse fields are related, how number theory relates to series, which, in turn, relate to elliptic integrals and then to differential equations. There are dozens of such strands in this beautiful web of mathematics. At the same time, we see Euler grow in power and sophistication, from a young student when at 18 he published his first work on differential equations (a paper with a serious flaw) to the most celebrated mathematician and scientist of his time. It is a portrait of the world s most exciting mathematics between 1725 and 1741, rich in technical detail, woven with connections within Euler s work and with the work of other mathematicians in other times and places, laced with historical context

商品描述(中文翻譯)

**描述**

《萊昂哈德·歐拉的早期數學》逐篇描述了萊昂哈德·欧拉早期的數學作品,即他在1741年離開聖彼得堡前往柏林的腓特烈大帝學院之前所寫的約50篇數學文章。這些早期作品包含了歐拉的一些偉大成就,如柯尼斯堡橋問題、他對巴塞爾問題的解決方案,以及他對歐拉-費馬定理的首次證明。書中還呈現了一些重要的結果,我們往往未意識到這些是歐拉的貢獻;例如混合偏導數(通常)相等、我們的 f(x) 符號,以及微分方程中的積分因子。這本書展示了不同領域的貢獻是如何相互關聯的,數論如何與級數相關,而級數又與橢圓積分相關,進而與微分方程相關。在這美麗的數學網絡中,有數十條這樣的線索。同時,我們看到歐拉的力量和複雜性逐漸增長,從18歲時發表的第一篇有嚴重缺陷的微分方程作品,到成為他那個時代最著名的數學家和科學家。這是一幅1725年至1741年間世界上最激動人心的數學的肖像,充滿技術細節,編織著歐拉的作品與其他時代和地點數學家的作品之間的聯繫,並交織著歷史背景。