Time-domain Methods For Microwave Structures: Analysis And Design (a Selected Reprint Volume)
暫譯: 微波結構的時域方法:分析與設計(精選重印卷)
Itoh
- 出版商: Wiley
- 出版日期: 1998-02-11
- 售價: $7,550
- 貴賓價: 9.5 折 $7,173
- 語言: 英文
- 頁數: 538
- 裝訂: Hardcover
- ISBN: 0780311094
- ISBN-13: 9780780311091
-
相關分類:
微波工程 Microwave
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$720$569 -
$640$544 -
$750$638 -
$299$254 -
$580$493 -
$399$339 -
$750$593 -
$580$199 -
$3,050$2,898 -
$580$493 -
$3,020$2,869 -
$650$507 -
$680$578 -
$1,730$1,644 -
$580$452 -
$880$199 -
$580$452 -
$790$616 -
$780$663 -
$560$442 -
$680$537 -
$650$429 -
$450$351 -
$495$485 -
$880$748
相關主題
商品描述
Description:
Electrical Engineering Time-Domain Methods for Microwave Structures Analysis and Design The most comprehensive collection of material available on this subject, this volume details the successful application of the finite-difference time-domain (FDTD) method to realistic microwave structures. Each chapter contains an expertly written introductory section that addresses the theoretical background of a specific component of the FDTD method, and a selection of reprinted landmark papers, filled with research results and illustrative examples. Topics covered include:
- Numerical issues
- Geometry description of microwave structures
- Methods to reduce the requirements for excessive computational resources
- Parallel and vector processing
- Applications
Time-Domain Methods for Microwave Structures is an all-in-one resource for engineers and researchers who want to use microwave structure simulation to facilitate improved designs, computations, and cost savings through reduced design cycles. It also serves as a valuable introduction for the advanced engineering student.
Table of Contents:
Introduction to FDTD Method for Planar Microwave Structures (B. Houshmand & I. Itoh).
Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media (K. Yee).
Modelling and Design of Millimetrewave Passive Circuits: From 2 to 3D (R. Sorrentino).
Analysis of Electromagnetic Coupling Through a Thick Aperture in Multilayer Planar Circuits Using the Extended Spectral Domain Approach and Finite Difference Time-Domain Method (A. Tran, et al.).
Modeling of Microwave Active Devices Using the FDTD Analysis Based on the Voltage-Source Approach (K. Kuo, et al.).
Spatial Solution Deflection Mechanism Indicated by FD-TD Maxwell's Equations Modeling (R. Joseph & A. Taflove).
Applications of the Nonlinear Finite Difference Time Domain (NL-FDTD) Method to Pulse Propagation in Nonlinear Media: Self-focusing and Linear-Nonlinear Interfaces (R. Ziolkowski & J. Judkins).
Current and SAR Induced in a Human Head Model by the Electromagnetic Fields Irradiated from a Cellular Phone (H. Chen & H. Wang).
Adaptation of FDTD Techniques to Acoustic Modelling (J. Maloney & K. Cummings)
Numerical Issues Regarding Finite-Difference Time-Domain Modeling of Microwave Structures (A. Taflove).
Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations (A. Taflove & M. Brodwin).
Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations (G. Mur).
Finite-Difference Solution of Maxwell's Equations in Generalized Nonorthogonal Coordinates (R. Holland).
The Finite-Difference—Time-Domain Method and its Application to Eigenvalue Problems ( D. Choi & W. Hoefer).
Calculations of the Dispersive Characteristics of Microstrips by the Time-Domain Finite Difference Method (X. Zhang, et al.).
Application of the Three-Dimensional Finite-Difference Time-Domain Method to the Analysis of Planar Microstrip Circuits (D. Sheen, et al.).
Accurate Computation of the Radiation from Simple Antennas and Using the Finite-Difference Time-Domain Method (J. Maloney. et al.).
The Use of Surface Impedance Concepts in the Finite-Difference Time-Domain Method (J. Maloney & G. Smith).
FDTD for Nth-Order Dispersive Media (R. Leubbers & F. Hunsberger).
FD-TD Modeling of Digital Signal Propagation in 3-D Circuits with Passive and Active Loads (M. Piket-May, et al.).
A Perfectly Matched Layer for the Absorption of Electromagnetic Waves (J. Berenger).
Using Linear and Non-Linear Predictors to Improve the Computational Efficiency of the FD-TD Algorithm (J. Chen, et al.).
Divergence Preserving Discrete Surface Integral Methods for Maxwell's Curl Equations Using Non-orthogonal Unstructured Grids (N. Madsen).
Conformal Finite-Difference Time-Domain Methods (C. Chan, et al.).
Modeling Three-Dimensional Discontinuities in Waveguides Using Non-orthogonal FDTD Algorithm (J. Lee, et al.).
Triangular-Domain Basis Functions for Full-Wave Analysis of Microstrip Discontinuities (R. Kipp & C. Chan).
Conformal Finite-Difference Time-Domain (FDTD) with Overlapping Grids (K. Yee, et al.).
A Locally Conformed Finite-Difference Time-Domain Algorithm of Modeling Arbitrary Shape Planar Metal Strips (J. Fang & J. Ren).
A Vertex-Based Finite-Volume Time-Domain Method for Analyzing Waveguide Discontinuities (C. Chan & J. Elson).
WETD—A Finite Element Time-Domain Approach for Solving Maxwell's Equations (J. Lee).
Speed-Up Methods for the FDTD Algorithm (B. Houshmand & T. Itoh).
Characterization of Microstrip Antennas Using the TLM Simulation Associated with a Prony-Pisarenko Method (J. Dubard, et al.).
A Combination of FD-TD and Prony's Methods for Analyzing Microwave Integrated Circuits (M. Ko & R. Mittra)
Enhancing Finite-Difference Time-Domain Analysis of Dielectric Resonators Using Spectrum Estimation Techniques (Z. Bi, et al.).
Recursive Covariance Ladder Algorithms for ARMA System Identification (P. Strobach).
The Segmentation Method—An Approach to the Analysis of Microwave Planar Circuits (T. Okoshi, et al.0>
The Implementation of Time-Domain Diakoptics in the FDTD Method (T. Huang).
Transmission Line Matrix Modeling of Dispersive Wide-Band Absorbing Boundaries with Time-Domain Diakoptics for S-Parameter Extraction (G. Costache & W. Hoefer).
Fast Sequential FDTD Diakoptics Method Using the System Identification Technique (T. Huang, et al.).
Efficient Implementation of the FDTD Algorithm on High- Performance Computers (S. Gedney).
Special Purpose Computers for the Time Domain Advance of Maxwell's Equations (R. Larson, et al.).
Predicting Scattering of Electromagnetic Fields Using the FD-TD on a Connection Machine (A. Perlik, et al.).
A Connection Machine (CM-2) Implementation of a Three- Dimensional Parallel Finite Difference Time-Domain Code for Electromagnetic Field Simulation (D. Davidson, et al).
Finite-Difference Time-Domain Analysis of Microwave Circuit Devices on High Performance Vector/Parallel Computers (S. Gedney).
Parallel FDTD Simulator for MIMD Computers (U. Effing, et al.).
Computational Fluid Dynamics on Parallel Processors (W. Gropp & E. Smith).
A Parallel Planar Generalized Yee Algoroithm for the Analysis of Microwave Circuit Devices (S. Gedney & F. Lansing).
Applications of Finite-Difference Time-Domain Technique to Planar Microwave Circuit Design (I. Wolff).
Analysis of an Arbitrarily Shaped Planar Circuit—A Time- Domain Approach (W. Gwarek).
Analysis of Arbitrarily Shaped Two-Dimensional Microwave Circuits by Finite-Difference Time-Domain Method (W. Gwarek).
Calculations of the Dispersive Characteristics of Microstrips by the Time-Domain Finite Difference Method (X. Zhang, et al.).
Time-Domain Finite Difference Approach to the Calculation of the Frequency-Dependent Characteristics of Microstrip Discontinuities (X. Zhang & K. Mei).
Analysis of Microstrip Circuits Using Three-Dimensional Full-Wave Electromagnetic Field Analysis in the Time Domain (T. Shibata, et al.).
Characterization of a 90° Microstrip Bend with Arbitrary Miter Via the Time-Domain Finite Difference Method (J. Moore & H. Ling).
Application of the Three-Dimensional Finite-Difference Time-Domain Method to the Analysis of Planar Microstrip Circuits (D. Sheen, et al.).
Full-Wage Analysis of Coplanar Discontinuities Considering Three-Dimensional Bond Wires (M. Rittweger, et al.).
Analysis of Cross-Talk on High-Speed Digital Circuit Using the Finite Difference Time-Domain Method (N. Pothecary & C. Railton).
An Efficient Two-Dimensional Graded Mesh Finite-Difference Time-Domain Algorithms for Shielded or Open Waveguide Structures (V. Brankovic, et al.).
Steady-State Analysis of Non-Lineaar Forced and Autonomous Microwave Circuits Using the Compression Approach (J. Kunisch & I. Wolff).
Computer-Aided Engineering for Microwave and Millimeter-Wave Circuits Using the FD-TD Technique of Field Simulations (T. Shibata & H. Kimura).
FDTD Simulation for Microwave Packages and Interconnects (M. Rittweger, et al.).
商品描述(中文翻譯)
描述:
電機工程時域方法在微波結構分析與設計中的應用。本書是該主題上最全面的資料集,詳細介紹了有限差分時域(FDTD)方法在現實微波結構中的成功應用。每一章都包含專業撰寫的介紹部分,針對FDTD方法中特定組件的理論背景進行說明,並選擇了一些具有里程碑意義的論文,充滿了研究結果和示例。涵蓋的主題包括:
- 數值問題
- 微波結構的幾何描述
- 減少過度計算資源需求的方法
- 並行和向量處理
- 應用
《微波結構的時域方法》是工程師和研究人員的一站式資源,旨在利用微波結構模擬來促進設計改進、計算和通過縮短設計週期來節省成本。它也為高級工程學生提供了寶貴的入門知識。
目錄:
- 平面微波結構的FDTD方法介紹(B. Houshmand & I. Itoh)。
- 涉及各向同性介質的麥克斯韋方程初邊值問題的數值解(K. Yee)。
- 毫米波無源電路的建模與設計:從2D到3D(R. Sorrentino)。
- 使用擴展光譜域方法和有限差分時域方法分析多層平面電路中厚孔的電磁耦合(A. Tran 等)。
- 基於電壓源方法的FDTD分析的微波主動元件建模(K. Kuo 等)。
- FD-TD麥克斯韋方程建模所指示的空間解偏轉機制(R. Joseph & A. Taflove)。
- 非線性有限差分時域(NL-FDTD)方法在非線性介質中脈衝傳播的應用:自聚焦和線性-非線性界面(R. Ziolkowski & J. Judkins)。
- 由手機輻射的電磁場在人體頭部模型中引起的電流和SAR(H. Chen & H. Wang)。
- FDTD技術在聲學建模中的適應(J. Maloney & K. Cummings)。
- 微波結構的有限差分時域建模的數值問題(A. Taflove)。
- 使用時間相關的麥克斯韋方程的穩態電磁散射問題的數值解(A. Taflove & M. Brodwin)。
- 時域電磁場方程的有限差分近似的吸收邊界條件(G. Mur)。
- 在廣義非正交坐標系中解麥克斯韋方程的有限差分方法(R. Holland)。
- 有限差分-時域方法及其在特徵值問題中的應用(D. Choi & W. Hoefer)。
- 使用時域有限差分方法計算微帶線的色散特性(X. Zhang 等)。
- 三維有限差分時域方法在平面微帶電路分析中的應用(D. Sheen 等)。
- 使用有限差分時域方法準確計算簡單天線的輻射(J. Maloney 等)。
- 在有限差分時域方法中使用表面阻抗概念(J. Maloney & G. Smith)。
- N階色散介質的FDTD(R. Leubbers & F. Hunsberger)。
- FD-TD在具有被動和主動負載的3D電路中數字信號傳播的建模(M. Piket-May 等)。
- 用於吸收電磁波的完美匹配層(J. Berenger)。
- 使用線性和非線性預測器提高FD-TD算法的計算效率(J. Chen 等)。
- 使用非正交非結構網格的保持散度的離散表面積分方法(N. Madsen)。
- 共形有限差分時域方法(C. Chan 等)。
- 使用非正交FDTD算法建模波導中的三維不連續性(J. Lee 等)。
- 用於微帶不連續性的全波分析的三角域基函數(R. Kipp & C. Chan)。
- 具有重疊網格的共形有限差分時域(FDTD)(K. Yee 等)。
- 一種局部共形有限差分時域算法,用於建模任意形狀的平面金屬條(J. Fang & J. Ren)。
- 用於分析波導不連續性的基於頂點的有限體積時域方法(C. Chan & J. Elson)。
- WETD—解麥克斯韋方程的有限元素時域方法(J. Lee)。
- FDTD算法的加速方法(B. Houshmand & T. Itoh)。
- 使用與Prony-Pisarenko方法相關的TLM模擬對微帶天線的特性進行表徵(J. Dubard 等)。
- FD-TD和Prony方法的結合,用於分析微波集成電路(M. Ko & R. Mittra)。
- 使用頻譜估計技術增強介電共振器的有限差分時域分析(Z. Bi 等)。
- 用於ARMA系統識別的遞歸協方差梯形算法(P. Strobach)。
- 分割方法—分析微波平面電路的一種方法(T. Okoshi 等)。
- 在FDTD方法中實現時域分割技術(T. Huang)。
- 使用時域分割技術進行色散寬帶吸收邊界的傳輸線矩陣建模以提取S參數(G. Costache & W. Hoefer)。
- 使用系統識別技術的快速序列FDTD分割方法(T. Huang 等)。
- 在高性能計算機上高效實現FDTD算法(S. Gedney)。
- 用於麥克斯韋方程時域推進的專用計算機(R. Larson 等)。
- 使用FD-TD在連接機上預測電磁場的散射(A. Perlik 等)。
- 連接機(CM-2)實現的三維並行有限差分時域代碼,用於電磁場模擬(D. Davidson 等)。
- 在高性能向量/並行計算機上對微波電路設備進行有限差分時域分析(S. Gedney)。
- 用於MIMD計算機的並行FDTD模擬器(U. Effing 等)。
- 在並行處理器上進行計算流體力學(W. Gropp & E. Smith)。
- 用於分析微波電路設備的並行平面廣義Yee算法(S. Gedney & F. Lansing)。
- 有限差分時域技術在平面微波電路設計中的應用(I. Wolff)。
- 任意形狀平面電路的分析—時域方法(W. Gwarek)。
- 使用有限差分時域方法分析任意形狀的二維微波電路(W. Gwarek)。
- 使用時域有限差分方法計算微帶線的色散特性(X. Zhang 等)。
- 時域有限差分方法計算微帶不連續性的頻率依賴特性(X. Zhang & K. Mei)。
- 使用三維全波電磁場分析的微帶電路分析(T. Shibata 等)。
- 使用時域有限差分方法對具有任意斜接的90°微帶彎頭進行特性分析(J. Moore & H. Ling)。
- 三維有限差分時域方法在平面微帶電路分析中的應用(D. Sheen 等)。
- 考慮三維鍵合線的共平面不連續性的全波分析(M. Rittweger 等)。
- 使用有限差分時域方法分析高速數字電路中的串擾(N. Pothecary & C. Railton)。
- 用於屏蔽或開放波導結構的高效二維分級網格有限差分時域算法(V. Brankovic 等)。
- 使用壓縮方法對非線性強迫和自主微波電路進行穩態分析(J. Kunisch & I. Wolff)。
- 使用FD-TD技術進行微波和毫米波電路的計算機輔助工程。