Data Science for Fundraising: Build Data-Driven Solutions Using R
暫譯: 募款數據科學:使用 R 建立數據驅動解決方案

Ashutosh R Nandeshwar, Rodger Devine

  • 出版商: DATA INSIGHT PARTNERS LLC
  • 出版日期: 2018-02-14
  • 售價: $2,260
  • 貴賓價: 9.5$2,147
  • 語言: 英文
  • 頁數: 568
  • 裝訂: Paperback
  • ISBN: 0692057846
  • ISBN-13: 9780692057841
  • 相關分類: Data Science
  • 立即出貨 (庫存=1)

買這商品的人也買了...

商品描述

Discover the techniques used by the top R programmers to generate data-driven solutions.

Although the non-profit industry has advanced using CRMs and donor databases, it has not fully explored the data stored in those databases. Meanwhile, the data scientists, in the for-profit industry, using sophisticated tools, have generated data-driven results and effective solutions for several challenges in their organizations.

Wouldn’t you like to learn these data science techniques to solve fundraising problems?

After reading Data Science for Fundraising, you can:
✔ Begin your data science journey with R
✔ Import data from Excel, text and CSV files, and databases, such as sqllite and Microsoft's SQL Server
✔ Apply data cleanup techniques to remove unnecessary characters and whitespace
✔ Manipulate data by removing, renaming, and ordering rows and columns
✔ Join data frames using dplyr
✔ Perform Exploratory Data Analysis by creating box-plots, histograms, and Q-Q plots
✔ Understand effective data visualization principles, best practices, and techniques
✔ Use the right chart type after understanding the advantages and disadvantages of different chart types
✔ Create beautiful maps by ZIP code, county, and state
✔ Overlay maps with your own data
✔ Create elegant data visualizations, such as heat maps, slopegraphs, and animated charts
✔ Become a data visualization expert
✔ Create Recency, Frequency, Monetary (RFM) models
✔ Build predictive models using machine learning techniques, such as K-nearest neighbor, Naive Bayes, decision trees, random forests, gradient boosting, and neural network
✔ Build deep learning neural network models using TensorFlow
✔ Predict next transaction amount using regression and machine learning techniques, such as neural networks and quantile regression
✔ Segment prospects using clustering and association rule mining
✔ Scrape data off the web and create beautiful reports from that data
✔ Predict sentiment using text mining and Twitter data
✔ Analyze social network data using measures, such as betweenness, centrality, and degrees
✔ Visualize social networks by building beautiful static and interactive maps
✔ Learn the industry-transforming trends

Regardless of your skill level, you can equip yourself and help your organization succeed with these data science techniques using R.

商品描述(中文翻譯)

D探索頂尖 R 程式設計師用來生成數據驅動解決方案的技術。

儘管非營利行業已經利用 CRM 和捐贈者數據庫取得進展,但仍未充分探索這些數據庫中儲存的數據。與此同時,盈利行業的數據科學家們使用先進的工具,為他們組織中的多個挑戰生成了數據驅動的結果和有效的解決方案。

您不想學習這些數據科學技術來解決籌款問題嗎?

閱讀《數據科學與籌款》後,您可以:
✔ 開始您的 R 數據科學之旅
✔ 從 Excel、文本和 CSV 文件以及數據庫(如 sqllite 和 Microsoft SQL Server)導入數據
✔ 應用數據清理技術以移除不必要的字符和空白
✔ 通過刪除、重命名和排序行和列來操作數據
✔ 使用 dplyr 連接數據框
✔ 通過創建箱形圖、直方圖和 Q-Q 圖進行探索性數據分析
✔ 理解有效的數據可視化原則、最佳實踐和技術
✔ 在了解不同圖表類型的優缺點後使用正確的圖表類型
✔ 根據 ZIP 碼、縣和州創建美麗的地圖
✔ 用您自己的數據覆蓋地圖
✔ 創建優雅的數據可視化,如熱圖、斜率圖和動畫圖表
✔ 成為數據可視化專家
✔ 創建最近性、頻率、貨幣(RFM)模型
✔ 使用機器學習技術(如 K 最近鄰、朴素貝葉斯、決策樹、隨機森林、梯度提升和神經網絡)構建預測模型
✔ 使用 TensorFlow 構建深度學習神經網絡模型
✔ 使用回歸和機器學習技術(如神經網絡和分位數回歸)預測下一筆交易金額
✔ 使用聚類和關聯規則挖掘對潛在客戶進行細分
✔ 從網絡抓取數據並從中創建美麗的報告
✔ 使用文本挖掘和 Twitter 數據預測情感
✔ 使用介量(如中介中心性、中心性和度數)分析社交網絡數據
✔ 通過構建美麗的靜態和互動地圖來可視化社交網絡
✔ 學習行業轉型的趨勢

無論您的技能水平如何,您都可以利用這些使用 R 的數據科學技術來裝備自己並幫助您的組織成功。