Programming Collective Intelligence: Building Smart Web 2.0 Applications (Paperback)
Toby Segaran
- 出版商: O'Reilly|英文2書85折
- 出版日期: 2007-09-25
- 售價: $1,840
- 貴賓價: 9.5 折 $1,748
- 語言: 英文
- 頁數: 362
- 裝訂: Paperback
- ISBN: 0596529325
- ISBN-13: 9780596529321
-
相關分類:
Python、程式語言、大數據 Big-data、Machine Learning
-
相關翻譯:
集體智慧編程 (簡中版)
買這商品的人也買了...
-
$1,078Operating System Principles, 7/e(IE) (美國版ISBN:0471694665-Operating System Concepts, 7/e) (平裝)
-
$880$695 -
$880$581 -
$650$514 -
$550$468 -
$350$315 -
$880$616 -
$990$891 -
$600$480 -
$520$411 -
$540$427 -
$1,180$1,003 -
$980$774 -
$450$351 -
$690$587 -
$490$417 -
$740$585 -
$590$502 -
$480$374 -
$420$328 -
$680$578 -
$1,372Elementary Linear Algebra with Supplemental Applications, 10/e (Paperback)
-
$750$638 -
$480$432 -
$1,330Introduction to Java Programming : Comprehensive Version, 9/e (IE-Paperback)
相關主題
商品描述
Description
Want to tap the power behind search rankings, product recommendations, social bookmarking, and online matchmaking? This fascinating book demonstrates how you can build Web 2.0 applications to mine the enormous amount of data created by people on the Internet. With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.
Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:
- Collaborative filtering techniques that enable online retailers to recommend products or media
- Methods of clustering to detect groups of similar items in a large dataset
- Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm
- Optimization algorithms that search millions of possible solutions to a problem and choose the best one
- Bayesian filtering, used in spam filters for classifying documents based on word types and other features
- Using decision trees not only to make predictions, but to model the way decisions are made
- Predicting numerical values rather than classifications to build price models
- Support vector machines to match people in online dating sites
- Non-negative matrix factorization to find the independent features in a dataset
- Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game
Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you.
商品描述(中文翻譯)
描述
想要利用搜索排名、產品推薦、社交書籤和網上配對的力量嗎?這本引人入勝的書籍展示了如何建立 Web 2.0 應用程序,以開採互聯網上人們創建的大量數據。本書中的複雜算法可以幫助您編寫智能程序,從其他網站訪問有趣的數據集,收集自己應用程序的用戶數據,並在找到數據後進行分析和理解。
《Programming Collective Intelligence》帶您進入機器學習和統計學的世界,並解釋如何從您和其他人每天收集的信息中得出有關用戶體驗、市場營銷、個人喜好和人類行為的結論。每個算法都以清晰簡潔的方式描述,並附有可以立即在您的網站、博客、Wiki 或專門應用程序上使用的代碼。本書解釋了以下內容:
- 協同過濾技術,使在線零售商能夠推薦產品或媒體
- 聚類方法,用於檢測大數據集中相似項目的群組
- 搜索引擎功能-爬蟲、索引器、查詢引擎和 PageRank 算法
- 優化算法,搜索數百萬個可能的解決方案並選擇最佳解決方案
- 貝葉斯過濾,用於基於詞類和其他特徵對文檔進行分類的垃圾郵件過濾器
- 使用決策樹不僅進行預測,還模擬決策的方式
- 預測數值而不是分類,以建立價格模型
- 支持向量機,用於在線約會網站上匹配人們
- 非負矩陣分解,用於找到數據集中的獨立特徵
- 進化智能解決問題-計算機通過改進自己的代碼來提高遊戲技能
每章都包含擴展算法的練習,使其更加強大。超越簡單的數據庫支持應用程序,讓互聯網上的豐富數據為您服務。