Prediction, Learning, and Games (Hardcover)
暫譯: 預測、學習與遊戲 (精裝版)
Nicolo Cesa-Bianchi, Gabor Lugosi
- 出版商: Cambridge
- 出版日期: 2006-03-13
- 售價: $3,520
- 貴賓價: 9.5 折 $3,344
- 語言: 英文
- 頁數: 408
- 裝訂: Hardcover
- ISBN: 0521841089
- ISBN-13: 9780521841085
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$990$891 -
$480$379 -
$530$350 -
$590$466 -
$720$569 -
$650$553 -
$860$731 -
$650$514 -
$620$527 -
$820$648 -
$980$774 -
$500$395 -
$680$537 -
$490$323 -
$580$522 -
$650$514 -
$850$672 -
$490$323 -
$650$514 -
$420$332 -
$520$442 -
$560$442 -
$580$458 -
$520$411 -
$1,680$1,596
相關主題
商品描述
This important new text and reference for researchers and students in machine learning, game theory, statistics and information theory offers the first comprehensive treatment of the problem of predicting individual sequences. Unlike standard statistical approaches to forecasting, prediction of individual sequences does not impose any probabilistic assumption on the data-generating mechanism. Yet, prediction algorithms can be constructed that work well for all possible sequences, in the sense that their performance is always nearly as good as the best forecasting strategy in a given reference class. The central theme is the model of prediction using expert advice, a general framework within which many related problems can be cast and discussed. Repeated game playing, adaptive data compression, sequential investment in the stock market, sequential pattern analysis, and several other problems are viewed as instances of the experts' framework and analyzed from a common nonstochastic standpoint that often reveals new and intriguing connections. Old and new forecasting methods are described in a mathematically precise way in order to characterize their theoretical limitations and possibilities.
商品描述(中文翻譯)
這本重要的新書和參考資料針對機器學習、博弈論、統計學和信息理論的研究者和學生,提供了對於預測個別序列問題的首次全面探討。與標準的統計預測方法不同,個別序列的預測並不對數據生成機制施加任何概率假設。然而,可以構建出在所有可能序列上表現良好的預測算法,這意味著它們的性能總是幾乎與給定參考類別中的最佳預測策略一樣好。核心主題是使用專家建議的預測模型,這是一個通用框架,許多相關問題可以在其中被表述和討論。重複博弈、適應性數據壓縮、股市的序列投資、序列模式分析以及其他幾個問題被視為專家框架的實例,並從一個共同的非隨機觀點進行分析,這常常揭示出新的和引人入勝的聯繫。舊的和新的預測方法以數學精確的方式進行描述,以便表徵它們的理論限制和可能性。